DONATE

Publications

by Keyword: Coatings

Witzdam, Lena, White, Tom, Rodriguez-Emmenegger, Cesar, (2024). Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings Macromolecular Bioscience 24, 2400152

Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices. The activation of coagulation on the surface of blood-contacting medical devices often leads to thromboembolic complications. A concept for the next generation of hemocompatbile surfaces inspired by endothelium is proposed. This concept not only contribute to the fundamental understanding of hemocompatibility but also offer practical implications for the design and development of biomedical devices with enhanced biocompatibility and functionality. image

JTD Keywords: Antifouling coatings, Antifouling polymer brushes, Coagulation-factor-xii, Endothelium-inspired, Hemocompatibility, Hemocompatible surface coatings, Heparin-induced thrombocytopenia, Nitric-oxide release, Of-the-art, Peptide macrocycle inhibitor, Plasma contact system, Protein-adsorption, Self-assembled monolayers, Surface modificatio, Synthetic endotheliu


Rodriguez-Lejarraga, Paula, Martin-Iglesias, Sara, Moneo-Corcuera, Andrea, Colom, Adai, Redondo-Morata, Lorena, Giannotti, Marina I, Petrenko, Viktor, Monleon-Guinot, Irene, Mata, Manuel, Silvan, Unai, Lanceros-Mendez, Senentxu, (2024). The surface charge of electroactive materials governs cell behaviour through its effect on protein deposition Acta Biomaterialia 184, 201-209

The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies. (c) 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

JTD Keywords: Adhesion, Atomic-force microscope, Biomaterials, Collagen, Collagen fibril, Electroactive material, Energ, Nanofibers, Osteogenic differentiation, Polyvinylidene fluoride, Pvdf, Stimuli, Surface charge, Surface coating, Systems


Krukiewicz, Katarzyna, Contessotto, Paolo, Nedjari, Salima, Martino, Mikael M, Redenski, Idan, Gabet, Yankel, Speranza, Giorgio, O'Brien, Timothy, Altankov, George, Awaja, Firas, (2024). Clinical potential of plasma-functionalized graphene oxide ultrathin sheets for bone and blood vessel regeneration: Insights from cellular and animal models Biomaterials Advances 161, 213867

Graphene and graphene oxide (GO), due to their unique chemical and physical properties, possess biochemical characteristics that can trigger intercellular signals promoting tissue regeneration. Clinical applications of thin GO-derived sheets have inspired the development of various tissue regeneration and repair approaches. In this study, we demonstrate that ultrathin sheets of plasma-functionalized and reduced GO, with the oxygen content ranging from 3.2 % to 22 % and the nitrogen content from 0 % to 8.3 %, retain their essential mechanical and molecular integrity, and exhibit robust potential for regenerating bone tissue and blood vessels across multiple cellular and animal models. Initially, we observed the growth of blood vessels and bone tissue in vitro using these functionalized GO sheets on human adipose-derived mesenchymal stem cells and umbilical vein endothelial cells. Remarkably, our study indicates a 2.5-fold increase in mineralization and two-fold increase in tubule formation even in media lacking osteogenic and angiogenic supplements. Subsequently, we observed the initiation, conduction, and formation of bone and blood vessels in a rat tibial osteotomy model, evident from a marked 4-fold increase in the volume of low radio-opacity bone tissue and a significant elevation in connectivity density, all without the use of stem cells or growth factors. Finally, we validated these findings in a mouse critical-size calvarial defect model (33 % higher healing rate) and a rat skin lesion model (up to 2.5-fold increase in the number of blood vessels, and 35 % increase in blood vessels diameter). This study elucidates the proosteogenic and pro-angiogenic properties of both pristine and plasma-treated GO ultrathin films. These properties suggest their significant potential for clinical applications, and as valuable biomaterials for investigating fundamental aspects of bone and blood vessel regeneration.

JTD Keywords: Adhesion, Angiogenesis, Biocompatibilit, Bone regeneratio, Coatings, Fibronectin, Graphene oxide, Growth, Mesenchymal stem-cells, Osteoblast, Osteogenic differentiation, Plasma treatment, Protein, Tissue regeneration


Witzdam, L, Garay-Sarmiento, M, Gagliardi, M, Meurer, YL, Rutsch, Y, Englert, J, Philipsen, S, Janem, A, Alsheghri, R, Jakob, F, Molin, DGM, Schwaneberg, U, van den Akker, NMS, Rodriguez-Emmenegger, C, (2024). Brush-Like Coatings Provide a Cloak of Invisibility to Titanium Implants Macromolecular Bioscience 24, e2300434

Orthopedic implants such as knee and hip implants are one of the most important types of medical devices. Currently, the surface of the most advanced implants consists of titanium or titanium-alloys with high porosity at the bone-contacting surface leading to superior mechanical properties, excellent biocompatibility, and the capability of inducing osseointegration. However, the increased surface area of porous titanium provides a nidus for bacteria colonization leading to implant-related infections, one of the main reasons for implant failure. Here, two readily applicable titanium-coatings based on hydrophilic carboxybetaine polymers that turn the surface stealth thereby preventing bacterial adhesion and colonization are developed. These coatings are biocompatible, do not affect cell functionality, exhibit great antifouling properties, and do not cause additional inflammation during the healing process. In this way, the coatings can prevent implant-related infections, while at the same time being completely innocuous to its biological environment. Thus, these coating strategies are a promising route to enhance the biocompatibility of orthopedic implants and have a high potential for clinical use, while being easy to implement in the implant manufacturing process.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.

JTD Keywords: bacteria repellency, biocompatibility, blood-plasma, brushes, stealth coatings, surface, titanium implants, Antifouling surfaces, Bacteria repellency, Biocompatibility, Brushes, Polymer brushes, Stealth coatings, Titanium implants


Witzdam, L, Vosberg, B, Grosse-Berkenbusch, K, Stoppelkamp, S, Wendel, HP, Rodriguez-Emmenegger, C, (2024). Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting Macromolecular Bioscience 24, e2300321

Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.

JTD Keywords: adsorption, binding, c1-esterase-inhibitor, coatings, contact activation, factor-xii, fxii activation, hemocompatibility, hemocompatible surface modification, heparin, polymer brushes, system, thrombosis, Adsorption, Anticoagulation, Antifouling agent, Article, Beta-fxiia, Biocompatibility, Blood, Blood clotting, Blood clotting factor 12, Blood clotting factor 12a, Blood clotting factor 12a inhibitor, Blood coagulation, C1-esterase-inhibitor, Cell activation, Chemical activation, Coagulation, Coating (procedure), Complement component c1s inhibitor, Complement system, Controlled study, Dendrimers, Enzyme immobilization, Enzymes, Erythrocyte, Esters, Factor xii, Factor xii activation, Factor xiia, Fibrin deposition, Functional polymers, Fxii activation, Haemocompatibility, Hemocompatibility, Hemocompatible surface modification, Hemostasis, Heparin, Human, Hydrogel, Medical devices, Metabolism, Plasma kallikrein, Plasma protein, Plastic coatings, Platelet count, Polymer, Polymer brushes, Polymerization, Polymers, Property, Root cause, Surface plasmon resonance, Surface property, Surface reactions, Surface-modification, Thrombocyte adhesion, Β-fxiia


García-Mintegui, C, Chausse, V, Labay, C, Mas-Moruno, C, Ginebra, MP, Cortina, JL, Pegueroles, M, (2024). Dual peptide functionalization of Zn alloys to enhance endothelialization for cardiovascular applications Applied Surface Science 645, 158900

A new generation of fully bioresorbable metallic Zn-based alloys could be used for stenting applications; however, the initial surface degradation delays stent re-endothelialization. Thus, this work proposes a dual strategy to control the corrosion and accelerate the endothelialization of ZnMg and ZnAg biodegradable alloys. First, a stable polycaprolactone (PCL) coating is obtained and followed by its functionalization with either linear RGD (Arg-Gly-Asp) or REDV (Arg-Glu-Asp-Val) peptides or a dual peptide-based platform combining both sequences (RGD-REDV). Scratching tests showed neither delamination nor detachment of the polymeric coating. Potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) measurements confirmed the corrosion resistance after PCL coating by revealing lower current density and higher absolute impedance values. X-ray photoelectron spectroscopy (XPS) and fluorescent microscopy confirmed the correct peptide immobilization onto PCL coated Zn alloys. The functionalized samples exhibited enhanced human umbilical vein endothelial cells (HUVEC) adhesion. The higher number of adhered cells to the functionalized surfaces with the RGD-REDV platform demonstrates the synergistic effect of combining both RGD and REDV sequences. Higher corrosion resistance together with enhanced endothelialization indicates that the dual functionalization of Zn alloys with PCL and peptide-based RGD-REDV platform holds great potential to overcome the clinical limitations of current biodegradable metal stents.

JTD Keywords: Binary alloys, Biodegradable metals, Bioresorbable, Cardiovascular applications, Cell adhesive peptides, Corrosion, Corrosion resistance, Corrosion resistant alloys, Corrosion resistant coatings, Degradation, Dual peptide-based platform, Electrochemical corrosion, Electrochemical impedance spectroscopy, Endothelial cells, Endothelialization, Functionalization, Functionalizations, In-vitro, Magnesium alloys, Metallics, Mg alloy, Peptides, Polycaprolactone coating, Polymer-coatings, Rgd-functionalization, Silver alloys, Stents, Surface, X ray photoelectron spectroscopy, Zinc, Zinc alloys, Zn alloys, Zn-based alloys


Englert, J, Palà, M, Witzdam, L, Rayatdoost, F, Grottke, O, Lligadas, G, Rodriguez-Emmenegger, C, (2023). Green Solvent-Based Antifouling Polymer Brushes Demonstrate Excellent Hemocompatibility Langmuir 39, 18476-18485

Medical devices are crucial for patient care, yet even the best biomaterials lead to infections and unwanted activation of blood coagulation, potentially being life-threatening. While hydrophilic polymer brushes are the best coatings to mitigate these issues, their reliance on fossil raw materials underscores the urgency of bio-based alternatives. In this work, we introduce polymer brushes of a green solvent-based monomer, prohibiting protein adsorption, bacterial colonization, and blood clot formation at the same level as fossil-based polymer brushes. The polymer brushes are composed of N,N-dimethyl lactamide acrylate (DMLA), can be polymerized in a controlled manner, and show strong hydrophilicity as determined by thermodynamic analysis of the surface tension components. The contact of various challenging protein solutions results in repellency on the poly(DMLA) brushes. Furthermore, the poly(DMLA) brushes completely prevent the adhesion and colonization of Escherichia coli. Remarkably, upon blood contact, the poly(DMLA) brushes successfully prevent the formation of a fibrin network and leukocyte adhesion on the surface. While showcasing excellent antifouling properties similar to those of N-hydroxypropyl methacrylamide (HPMA) polymer brushes as one of the best antifouling coatings, the absence of hydroxyl groups prevents activation of the complement system in blood. We envision the polymer brushes to contribute to the future of hemocompatible coatings.

JTD Keywords: blood-plasma, coatings, contact, fossil, poly(2-methacryloyloxyethyl phosphorylcholine), protein adsorption, resistance, self-assembled monolayers, sulfobetaine, Surface-energy components


Englert, J, Witzdam, L, Söder, D, Garay-Sarmiento, M, Joseph, A, Wagner, AM, Rodriguez-Emmenegger, C, (2023). Synthetic Evolution of a Supramolecular Harpooning Mechanism to Immobilize Vesicles at Antifouling Interfaces Macromolecular Chemistry And Physics 224, 2300306

The immobilization of vesicles has been conceptualized as a method to functionalize biointerfaces. However, the preservation of their integrity post immobilization remains a considerable challenge. Interfacial interactions can cause vesicle rupture upon close surface contact and non-specific protein adsorption impairing surface functions. To date, immobilization of vesicles has relied solely on either entrapment or prior modification of vesicles, both of which require laborious preparation and limit their applications. This work develops a bioinspired strategy to pin vesicles without prior modification while preserving their intact shape. This work introduces antifouling diblock copolymers and ultrathin surface-attached hydrogels containing a brush-like interface consisting of a bottle brush copolymer of N-(2-hydroxypropyl) methacrylamide (HPMA) and N-(3-methacrylamidopropyl)-N,N-dimethyldodecan-1-aminiumiodide (C12+). The presence of positive charges generates an attractive force that pulls vesicles toward the surface. At the surface, the amphiphilic properties of the combs facilitate their insertion into the membrane, mimicking the harpooning mechanism observed in antimicrobial peptides. Importantly, the antifouling poly(HPMA) backdrop serves to safeguard the vesicles by preventing deformation and breakage. Using a combination of thermodynamic analysis, surface plasmon resonance, and confocal laser scanning microscopy, this work demonstrates the efficiency of this biomimetic system to capture vesicles while maintaining an antifouling interface necessary for bioapplications. This work presents a novel supramolecular approach that combines three key elements: long-range attraction, vesicle pinning, and short-range repulsion to attract and harpoon vesicles, while protecting them at the surface. This work envisions these coatings as universal and biocompatible platforms that can be used not only to study vesicle interactions, but also as tools for biomedical applications.image

JTD Keywords: Antifouling coatings, Coatings, Delivery, Extracellular vesicles, Fabrication, Hydrogel, Janus dendrimers, Lipid vesicles, Liposomes, Membrane insertion, Polymer brushes, Proteins, Surface-energy components, Ultrathin surface-attached hydrogels, Vesicle pinning


Moreno, D, Buxadera-Palomero, J, Ginebra, MP, Manero, JM, Martin-Gómez, H, Mas-Moruno, C, Rodríguez, D, (2023). Comparison of the Antibacterial Effect of Silver Nanoparticles and a Multifunctional Antimicrobial Peptide on Titanium Surface International Journal Of Molecular Sciences 24, 9739

Titanium implantation success may be compromised by Staphylococcus aureus surface colonization and posterior infection. To avoid this issue, different strategies have been investigated to promote an antibacterial character to titanium. In this work, two antibacterial agents (silver nanoparticles and a multifunctional antimicrobial peptide) were used to coat titanium surfaces. The modulation of the nanoparticle (≈32.1 ± 9.4 nm) density on titanium could be optimized, and a sequential functionalization with both agents was achieved through a two-step functionalization method by means of surface silanization. The antibacterial character of the coating agents was assessed individually as well as combined. The results have shown that a reduction in bacteria after 4 h of incubation can be achieved on all the coated surfaces. After 24 h of incubation, however, the individual antimicrobial peptide coating was more effective than the silver nanoparticles or their combination against Staphylococcus aureus. All tested coatings were non-cytotoxic for eukaryotic cells.

JTD Keywords: antimicrobial peptide, biomaterials, bone, coatings, performance, ph, resistance, silanization, silver nanoparticles, staphylococcus aureus, Anti-bacterial agents, Antimicrobial peptide, Coated materials, biocompatible, Metal nanoparticles, Reduces bacterial adhesion, Silanization, Silver, Silver nanoparticles, Staphylococcus aureus, Surface properties, Titanium, Titanium functionalization


Rodríguez-Contreras, A, Torres, D, Piñera-Avellaneda, D, Pérez-Palou, L, Ortiz-Hernández, M, Ginebra, MP, Calero, JA, Manero, JM, Rupérez, E, (2023). Dual-Action Effect of Gallium and Silver Providing Osseointegration and Antibacterial Properties to Calcium Titanate Coatings on Porous Titanium Implants International Journal Of Molecular Sciences 24, 8762

Previously, functional coatings on 3D-printed titanium implants were developed to improve their biointegration by separately incorporating Ga and Ag on the biomaterial surface. Now, a thermochemical treatment modification is proposed to study the effect of their simultaneous incorporation. Different concentrations of AgNO3 and Ga(NO3)3 are evaluated, and the obtained surfaces are completely characterized. Ion release, cytotoxicity, and bioactivity studies complement the characterization. The provided antibacterial effect of the surfaces is analyzed, and cell response is assessed by the study of SaOS-2 cell adhesion, proliferation, and differentiation. The Ti surface doping is confirmed by the formation of Ga-containing Ca titanates and nanoparticles of metallic Ag within the titanate coating. The surfaces generated with all combinations of AgNO3 and Ga(NO3)3 concentrations show bioactivity. The bacterial assay confirms a strong bactericidal impact achieved by the effect of both Ga and Ag present on the surface, especially for Pseudomonas aeruginosa, one of the main pathogens involved in orthopedic implant failures. SaOS-2 cells adhere and proliferate on the Ga/Ag-doped Ti surfaces, and the presence of gallium favors cell differentiation. The dual effect of both metallic agents doping the titanium surface provides bioactivity while protecting the biomaterial from the most frequent pathogens in implantology.

JTD Keywords: 3d-printing, agent, antibacterial activity, bioactive ti, biomaterials, coatings, competition, cu, gallium, glasses, ions, metal, porous structures, promote osseointegration, silver, titanium implants, In-vitro, Porous structures, Titanium implants


Quandt, J, Garay-Sarmiento, M, Witzdam, L, Englert, J, Rutsch, Y, Stöcker, C, Obstals, F, Grottke, O, Rodriguez-Emmenegger, C, (2022). Interactive Hemocompatible Nanocoating to Prevent SurfaceInduced Coagulation in Medical Devices Advanced Materials Interfaces 9, 2201055

Riedelová, Z, Pereira, AD, Svoboda, J, Pop-Georgievski, O, Májek, P, Pecánková, K, Dycka, F, Rodriguez-Emmenegger, C, Riedel, T, (2022). The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes Macromolecular Bioscience 22, 2200247

Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.

JTD Keywords: antifouling surfaces, biosensor, blood-plasma, coagulation, coatings, compatibility, glycoprotein, hemocompatibility, identification, methacrylate), ms identification, polymer brushes, protein adsorption, surface-chemistry, Antifouling surfaces, High-density-lipoprotein, Protein adsorption


Yang, BQ, Wang, YX, Vorobii, M, Sauter, E, Koenig, M, Kumar, R, Rodriguez-Emmenegger, C, Hirtz, M, (2022). Evaluation of Dibenzocyclooctyne and Bicyclononyne Click Reaction on Azido-Functionalized Antifouling Polymer Brushes via Microspotting Advanced Materials Interfaces 9, 2102325

Dias, JMS, Estima, D, Punte, H, Klingner, A, Marques, L, Magdanz, V, Khalil, ISM, (2022). Modeling and Characterization of the Passive Bending Stiffness of Nanoparticle-Coated Sperm Cells using Magnetic Excitation Advanced Theory And Simulations 5, 2100438

Of all the various locomotion strategies in low- (Formula presented.), traveling-wave propulsion methods with an elastic tail are preferred because they can be developed using simple designs and fabrication procedures. The only intrinsic property of the elastic tail that governs the form and rate of wave propagation along its length is the bending stiffness. Such traveling wave motion is performed by spermatozoa, which possess a tail that is characterized by intrinsic variable stiffness along its length. In this paper, the passive bending stiffness of the magnetic nanoparticle-coated flagella of bull sperm cells is measured using a contactless electromagnetic-based excitation method. Numerical elasto-hydrodynamic models are first developed to predict the magnetic excitation and relaxation of nanoparticle-coated nonuniform flagella. Then solutions are provided for various groups of nonuniform flagella with disparate nanoparticle coatings that relate their bending stiffness to their decay rate after the magnetic field is removed and the flagellum restores its original configuration. The numerical models are verified experimentally, and capture the effect of the nanoparticle coating on the bending stiffness. It is also shown that electrostatic self-assembly enables arbitrarily magnetizable cellular segments with variable stiffness along the flagellum. The bending stiffness is found to depend on the number and location of the magnetized cellular segments. © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH.

JTD Keywords: cilia, flagella, flagellar propulsion, low reynolds numbers, magnetic, microswimmers, passive, sperm cell, Bending stiffness, Cells, Cellulars, Coatings, Decay (organic), Electric excitation, Excited states, Flagellar propulsion, Locomotion strategies, Low reynolds numbers, Magnetic, Magnetic excitations, Nanoparticle coatings, Passive, Propulsion methods, Self assembly, Simple++, Sperm cell, Sperm cells, Stiffness, Travelling waves, Variable stiffness, Wave propagation, Younǵs modulus


Moreira, Vitor Bonamigo, Rintjema, Jeroen, Bravo, Fernando, Kleij, Arjan W, Franco, Lourdes, Puiggali, Jordi, Aleman, Carlos, Armelin, Elaine, (2022). Novel Biobased Epoxy Thermosets and Coatings from Poly(limonene carbonate) Oxide and Synthetic Hardeners Acs Sustainable Chemistry & Engineering 10, 2708-2719

In the area of coating development, it is extremely difficult to find a substitute for bisphenol A diglycidyl ether (DGEBA), the classical petroleum-based raw material used for the formulation of epoxy thermosets. This epoxy resin offers fast curing reaction with several hardeners and the best thermal and chemical resistance properties for applications in coatings and adhesive technologies. In this work, a new biobased epoxy, derived from poly(limonene carbonate) oxide (PLCO), was combined with polyetheramine and polyamineamide curing agents, offering a spectrum of thermal and mechanical properties, superior to DGEBA-based thermosets. The best formulation was found to be a combination of PLCO and a commercial curing agent (Jeffamine) in a stoichiometric 1:1 ratio. Although PLCO is a solid due to its high molecular weight, it was possible to create a two-component partially biobased epoxy paint without the need of volatile organic compounds (i.e., solvent-free formulation), intended for use in coating technology to partially replace DGEBA-based thermosets.

JTD Keywords: acid, adhesion, epoxy thermoset, mechanical properties, monomer, polycarbonates, polymers, protection, resins, solvent-free paint, thermal properties, Adhesives, Biobased epoxy, Bisphenol-a-diglycidyl ethers, Carbonation, Coating development, Coating technologies, Curing, Curing agents, Epoxy coatings, Epoxy resins, Epoxy thermoset, Epoxy thermosets, Limonene oxide, Mechanical properties, Monoterpenes, Paint, Poly(limonene carbonate) oxide, Solvent free, Solvent-free paint, Thermal properties, Thermosets, Volatile organic compounds


Boda, SK, Aparicio, C, (2022). Dual keratinocyte-attachment and anti-inflammatory coatings for soft tissue sealing around transmucosal oral implants Biomaterials Science 10, 665-677

Unlike the attachment of soft epithelial skin tissue to penetrating solid natural structures like fingernails and teeth, sealing around percutaneous/permucosal devices such as dental implants is hindered by inflammation and epidermal down growth. Here, we employed a dual keratinocyte-adhesive peptide and anti-inflammatory biomolecule coating on titanium to promote oral epithelial tissue attachment. For minimizing inflammation-triggered epidermal down growth, we coated pristine and oxygen plasma pre-treated polished titanium (pTi) with conjugated linoleic acid (CLA). Further, in order to aid in soft tissue attachment via the formation of hemidesmosomes, adhesive structures by oral keratinocytes, we coated the anionic linoleic acid (LA) adsorbed titanium with cationic cell adhesive peptides (CAP), LamLG3, a peptide derived from Laminin 332, the major extracellular matrix component of the basement membrane in skin tissue and Net1, derived from Netrin-1, a neural chemoattractant capable of epithelial cell attachment via alpha 6 beta 4 integrins. The dual CLA-CAP coatings on pTi were characterized by X-ray photoelectron spectroscopy and dynamic water contact angle measurements. The proliferation of human oral keratinocytes (TERT-2/OKF6) was accelerated on the peptide coated titanium while also promoting the expression of Col XVII and beta-4 integrin, two markers for hemidesmosomes. Simultaneously, CLA coating suppressed the production of inducible nitric oxide synthase (anti-iNOS); a pro-inflammatory M1 marker expressed in lipopolysaccharide (LPS) stimulated murine macrophages (RAW 264.7) and elevated expression of anti-CD206, associated to an anti-inflammatory M2 macrophage phenotype. Taken together, the dual keratinocyte-adhesive peptide and anti-inflammatory biomolecule coating on titanium can help reduce inflammation and promote permucosal/peri-implant soft tissue sealing.

JTD Keywords: Adhesives, Animal, Animals, Anti-inflammatories, Anti-inflammatory agents, Antiinflammatory agent, Biomolecules, Bone, Cell adhesion, Cell-adhesives, Coatings, Conjugated linoleic acid, Conjugated linoleic-acid, Contact angle, Hemidesmosome, Hemidesmosomes, Human, Humans, Hydroxyapatite, Inflammation, Integrins, Keratinocyte, Keratinocytes, Linoleic acid, Macrophages, Mice, Mouse, Nitric oxide, Oral implants, Pathology, Peptides, Skin tissue, Soft tissue, Supplementation, Surface properties, Surface property, Tissue, Titania, Titanium, X ray photoelectron spectroscopy


Oliver-Cervelló, L, Martin-Gómez, H, Reyes, L, Noureddine, F, Cavalcanti-Adam, EA, Ginebra, MP, Mas-Moruno, C, (2021). An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling Advanced Healthcare Materials 10, e2001757

© 2020 Wiley-VCH GmbH Recreating the healing microenvironment is essential to regulate cell–material interactions and ensure the integration of biomaterials. To repair bone, such bioactivity can be achieved by mimicking its extracellular matrix (ECM) and by stimulating integrin and growth factor (GF) signaling. However, current approaches relying on the use of GFs, such as bone morphogenetic protein 2 (BMP-2), entail clinical risks. Here, a biomimetic peptide integrating the RGD cell adhesive sequence and the osteogenic DWIVA motif derived from the wrist epitope of BMP-2 is presented. The approach offers the advantage of having a spatial control over the single binding of integrins and BMP receptors. Such multifunctional platform is designed to incorporate 3,4-dihydroxyphenylalanine to bind metallic oxides with high affinity in a one step process. Functionalization of glass substrates with the engineered peptide is characterized by physicochemical methods, proving a successful surface modification. The biomimetic interfaces significantly improve the adhesion of C2C12 cells, inhibit myotube formation, and activate the BMP-dependent signaling via p38. These effects are not observed on surfaces displaying only one bioactive motif, a mixture of both motifs or soluble DWIVA. These data prove the biological potential of recreating the ECM and engaging in integrin and GF crosstalk via molecular-based mimics.

JTD Keywords: binding, biomaterials, biomimetic peptides, bone, cell adhesion, cell differentiation, differentiation, dwiva, multifunctional coatings, osseointegration, osteoblasts, rgd, surface, surface functionalization, Biomimetic peptides, Biomimetics, Cell adhesion, Cell differentiation, Dwiva, Integrins, Intercellular signaling peptides and proteins, Matrix-bound bmp-2, Peptides, Rgd, Surface functionalization


Vidal, E, Guillem-Marti, J, Ginebra, MP, Combes, C, Ruperez, E, Rodriguez, D, (2021). Multifunctional homogeneous calcium phosphate coatings: Toward antibacterial and cell adhesive titanium scaffolds Surface & Coatings Technology 405, 126557

Implants for orthopedic applications need to be biocompatible and bioactive, with mechanical properties similar to those of surrounding natural bone. Given this scenario titanium (Ti) scaffolds obtained by Direct Ink Writing technique offer the opportunity to manufacture customized structures with controlled porosity and mechanical properties. Considering that 3D Ti scaffolds have a significant surface area, it is necessary to develop strategies against the initial bacterial adhesion in order to prevent infection in the early stages of the implantation, while promoting cell adhesion to the scaffold. The challenge is not only achieving a balance between antibacterial activity and osseointegration, it is also to develop a homogeneous coating on the inner and outer surface of the scaffold. The purpose of this work was the development of a single-step electrodeposition process in order to uniformly cover Ti scaffolds with a layer of calcium phosphate (CaP) loaded with chlorhexidine digluconate (CHX). Scaffold characterization was assessed by scanning electron microscopy, Energy dispersive X-ray spectroscopy, X-ray diffraction, micro-Raman microscopy and compressive strength tests. Results determined that the surface of scaffolds was covered by plate-like and whisker-like calcium phosphate crystals, which main phases were octacalcium phosphate and brushite. Biological tests showed that the as-coated scaffolds reduced bacteria adhesion (73 +/- 3% for Staphylococcus aureus and 70 +/- 2% for Escherichia coli). In vitro cell studies and confocal analysis revealed the adhesion and spreading of osteoblast-like SaOS-2 on coated surfaces. Therefore, the proposed strategy can be a potential candidate in bone replacing surgeries.

JTD Keywords: Antibacterial, Bacterial, Behavior, Biocompatibility, Calcium phosphate coating, Chlorhexidine, Chlorhexidine digluconate, Deposition, Electrodeposition, Hydroxyapatite coatings, Implants, One-step pulse electrodeposition, Plasma-spray, Release, Surface, Titanium scaffolds