DONATE

Publications

by Keyword: alignment

Chausse, V, Casanova-Batlle, E, Canal, C, Ginebra, MP, Ciurana, J, Pegueroles, M, (2023). Solvent-cast direct-writing and electrospinning as a dual fabrication strategy for drug-eluting polymeric bioresorbable stents Additive Manufacturing 71, 103568

Lopez-Muñoz, GA, Mughal, S, Ramón-Azcón, J, (2022). Sensors and Biosensors in Organs-on-a-Chip Platforms Advances In Experimental Medicine And Biology 1379, 55-80

Biosensors represent a powerful analytical tool for analyzing biomolecular interactions with the potential to achieve real-time quantitative analysis with high accuracy using low sample volumes, minimum sample pretreatment with high potential for the development of in situ and highly integrated monitoring platforms. Considering these advantages, their use in cell-culture systems has increased over the last few years. Between the different technologies for cell culture, organs-on-a-chip (OOCs) represent a novel technology that tries to mimic an organ's functionality by combining tissue engineering/organoid with microfluidics. Although there are still challenges to achieving OOC models with high organ mimicking relevance, these devices can offer effective models for drug treatment development by identifying drug targets, screening toxicity, and determining the potential effects of drugs in living beings. Consequently, in the future, we might replace animal studies by offering more ethical test models. Considering the relevance that different physiological and biochemical parameters have in the correct functionality of cells, sensing and biosensing platforms can offer an effective way for the real-time monitoring of physiological parameters and, in our opinion, more relevant, the secretion of biomarkers such as cytokines, growth factors, and others related with the influence of drugs or other types of stimulus in cell metabolism. Keeping this concept in mind, in this chapter, we focus on describing the potential use of sensors and biosensors in OOC devices to achieve fully integrated platforms that monitor physiological parameters and cell metabolism.© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

JTD Keywords: alignment, biosensors, cell, crystal microbalance biosensor, electrochemical biosensors, future, graphene oxide, label-free detection, organ-on-a-chip, oxygen, pre-clinical platforms, real-time analysis, screening, Biosensors, Organ-on-a-chip, Pre-clinical platforms, Screening, Sensors, Surface-plasmon resonance


Minguela, J, Muller, DW, Mucklich, F, Llanes, L, Ginebra, MP, Roa, JJ, Mas-Moruno, C, (2021). Peptidic biofunctionalization of laser patterned dental zirconia: A biochemical-topographical approach Materials Science & Engineering C-Materials For Biological Applications 125, 112096

A dual approach employing peptidic biofunctionalization and laser micro-patterns on dental zirconia was explored, with the aim of providing a flexible tool to improve tissue integration of restorations. Direct laser interference patterning with a femtosecond Ti:Sapphire laser was employed, and two periodic grooved patterns were produced with a periodicity of 3 and 10 μm. A platform containing the cell-adhesive RGD and the osteogenic DWIVA peptides was used to functionalize the grooved surfaces. Topography and surface damage were characterized by confocal laser scanning (CLSM), scanning electron and scanning transmission electron microscopy techniques. The surface patterns exhibited a high homogeneity and subsurface damage was found in the form of nano-cracks and nano-pores, at the bottom of the valleys. Accelerated tests in water steam were carried out to assess hydrothermal degradation resistance, which slightly decreased after the laser treatment. Interestingly, the detrimental effects of the laser modification were reverted by a post-laser thermal treatment. The attachment of the molecule was verified trough fluorescence CLSM and X-ray photoelectron spectroscopy. Finally, the biological properties of the surfaces were studied in human mesenchymal stem cells. Cell adhesion, morphology, migration and differentiation were investigated. Cells on grooved surfaces displayed an elongated morphology and aligned along the patterns. On these surfaces, migration was greatly enhanced along the grooves, but also highly restricted in the perpendicular direction as compared to flat specimens. After biofunctionalization, cell number and cell area increased and well-developed cell cytoskeletons were observed. However, no effects on cell migration were found for the peptidic platform. Although some osteogenic potential was found in specimens grooved with a periodicity of 10 μm, the largest effects were observed from the biomolecule, which favored upregulation of several genes related to osteoblastic differentiation in all the surfaces.

JTD Keywords: alumina toughened zirconia, cell alignment, grain-size, implants, interference, laser patterning, osteogenic differentiation, osteointegration, peptides, surface functionalization, surface-topography, tissue, titanium surface, Laser patterning, Low-temperature degradation, Osteointegration, Peptides, Surface functionalization, Zirconia


Garde, A., Laguna, P., Giraldo, B.F., Jané, R., Sörnmo, L., (2012). Ensemble-based time alignment of biomedical signals Proceedings BSI 2012 7th International Workshop on Biosignal Interpretation (BSI 2012) , IEEE (Como, Italy) W3: METHODS FOR BIOMEDICAL SIGNAL PROCESSING ENHANCEMENT, 307-310

In this paper, the problem of time alignment is revisited by adopting an ensemble-based approach with all signals jointly aligned. It is shown that the maximization of an eigenvalue ratio is synonymous to maximizing the signal-to-jitter-and-noise ratio. Since optimization of this criterion is extremely time consuming, a relaxed optimization procedure is introduced which converges much more quickly. Using simulations based on respiratory flow signals, the results suggest that the time delay error variance of the new method is much lower than that obtained with the well-known Woody’s method.

JTD Keywords: Time alignment, Signal ensemble, Subsample precision, Eigenvalue decomposition


Amigo, L. E., Fernandez, Q., Giralt, X., Casals, A., Amat, J., (2012). Study of patient-orthosis interaction forces in rehabilitation therapies IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 1098-1103

The design of mechanical joints that kinematically behave as their biological counterparts is a challenge that if not addressed properly can cause inadequate forces transmission between robot and patient. This paper studies the interaction forces in rehabilitation therapies of the elbow joint. To measure the effect of orthosis-patient misalignments, a force sensor with a novel distributed architecture has been designed and used for this study. A test-bed based on an industrial robot acting as a virtual exoskeleton that emulates the action of a therapist has been developed and the interaction forces analyzed.

JTD Keywords: Force, Force measurement, Force sensors, Joints, Medical treatment, Robot sensing systems, Force sensors, Medical robotics, Patient rehabilitation, Biological counterparts, Distributed architecture, Elbow joint, Force sensor, Inadequate forces transmission, Industrial robot, Mechanical joints design, Orthosis-patient misalignments, Patient-orthosis interaction forces, Rehabilitation therapies, Robot, Test-bed, Virtual exoskeleton