by Keyword: cART
Yuan, Shelby C, Alvarez, Zaida, Lee, Sieun Ruth, Pavlovic, Radoslav Z, Yuan, Chunhua, Singer, Ethan, Weigand, Steven J, Palmer, Liam C, Stupp, Samuel I, (2024). Supramolecular Motion Enables Chondrogenic Bioactivity of a Cyclic Peptide Mimetic of Transforming Growth Factor-β1 Journal Of The American Chemical Society 146, 21555-21567
Transforming growth factor (TGF)-beta 1 is a multifunctional protein that is essential in many cellular processes that include fibrosis, inflammation, chondrogenesis, and cartilage repair. In particular, cartilage repair is important to avoid physical disability since this tissue does not have the inherent capacity to regenerate beyond full development. We report here on supramolecular coassemblies of two peptide amphiphile molecules, one containing a TGF-beta 1 mimetic peptide, and another which is one of two constitutional isomers lacking bioactivity. Using human articular chondrocytes, we investigated the bioactivity of the supramolecular copolymers of each isomer displaying either the previously reported linear form of the mimetic peptide or a novel cyclic analogue. Based on fluorescence depolarization and H-1 NMR spin-lattice relaxation times, we found that coassemblies containing the cyclic compound and the most dynamic isomer exhibited the highest intracellular TGF-beta 1 signaling and gene expression of cartilage extracellular matrix components. We conclude that control of supramolecular motion is emerging as an important factor in the binding of synthetic molecules to receptors that can be tuned through chemical structure.
JTD Keywords: Amphiphile, Cartilage, Growth-factor-beta, Knee osteoarthritis, Neutralization, Progenitor cells, Repair, Scaffolds, Spectroscop, Tissue
Fuentes-Mera, L., Camacho, A., Engel, E., Pérez-Silos, V., Lara-Arias, J., Marino-Martínez, I., Peña-Martínez, V., (2019). Therapeutic potential of articular cartilage regeneration using tissue engineering based on multiphase designs Cartilage Tissue Engineering and Regeneration Techniques (ed. Nikolopoulos, Dimitrios D., Safos, George K., Dimitrios, Kalpaxis), IntechOpen (Budapest, Hungary) , 331-359
Articular cartilage tissue possesses poor ability to regenerate; as the lesion progresses, it extends to the underlying subchondral bone and an osteochondral (OC) defect appears complicating the therapeutic approaches. Cartilage tissue engineering has become a very active research area capable of contributing to medical technology innovation. In this regard, the development of new biomaterials in combination with cells represents one of the best alternatives for the treatment of OC injuries. In the last decades, the strategies have been designed without considering the cartilage as a complex tissue with a functionally stratified three-dimensional structure. Today, efforts are focused on creating a starting point in the process of cartilage formation with the development of a multiphase implants that recapitulates the cartilage as an OC unit, which improves its integration. This chapter will focus on a review of tissue engineering based on multiphase designs for cartilage and OC injuries, highlighting the importance of the biomaterial selection, and also the relevance of a biomimetic approach to reach a suitable microenvironment for the differentiation and maturation of the chondral tissue.
JTD Keywords: Osteochondral regeneration, Cartilage tissue engineering, Multiphasic designs, Biofunctionalization, Vascularization
Mohr, Raphael, Boesecke, Christoph, Dold, Leona, Schierwagen, Robert, Schwarze-Zander, Carolynne, Wasmuth, Jan-Christian, Weisensee, Insa, Rockstroh, Jürgen Kurt, Trebicka, Jonel, (2018). Return-to-health effect of modern combined antiretroviral therapy potentially predisposes HIV patients to hepatic steatosis Medicine 97, (17), e0462
Prevalence and risk factors for hepatic steatosis (HS) in the human immunodeficiency virus (HIV)-positive population of western countries are controversially discussed and potentially confounded by coinfection with viral hepatitis. Significant HS (more than 10% of hepatocytes) can be accurately assessed using controlled attenuation parameter (CAP) determination. Aim of this study was to assess prevalence and factors associated with significant HS in HIV monoinfected patients.
A total of 364 HIV-infected patients (289 monoinfected) were included in this prospective, cross-sectional study. All patients underwent CAP determination. Steatosis was classified as S1 (significant steatosis) with CAP > 238 dB/m, S2 with CAP > 260 dB/m, and S3 with CAP > 292 dB/m. Multivariable logistic regression analyses were performed to assess the factors associated with HS in this cohort.
Significant HS was detected in 118 monoinfected patients (149 in the total cohort). In the total cohort as well as in the monoinfected patients alone, HS grade distribution showed a similar pattern (S1:29%, S2:34%, and S3:37%). Interestingly, patients with HS had a longer history of HIV infection and combined antiretroviral therapy (cART). Interalia, age, gender, ethnicity, and metabolic factors were strongly associated with HS, while body mass index (BMI), triglyceride, and glycated hemoglobin (HbA1c) levels were independently associated with significant HS.
HS is highly prevalent among HIV monoinfected patients. Although metabolic risk factors, such as obesity and poorly controlled diabetes, are independently associated with HS in HIV monoinfected patients, cART and control of HIV seem to play an indirect role in the development of HS, probably through the return-to-health effect.
JTD Keywords: CAP, cART, HIV monoinfection, liver injury, NAFLD
Forget, J., Awaja, F., Gugutkov, D., Gustavsson, J., Gallego Ferrer, G., Coelho-Sampaio, T., Hochman-Mendez, C., Salmeron-Sánchez, M., Altankov, G., (2016). Differentiation of human mesenchymal stem cells toward quality cartilage using fibrinogen-based nanofibers Macromolecular Bioscience 16, (9), 1348-1359
Mimicking the complex intricacies of the extra cellular matrix including 3D configurations and aligned fibrous structures were traditionally perused for producing cartilage tissue from stem cells. This study shows that human adipose derived mesenchymal stem cells (hADMSCs) establishes significant chondrogenic differentiation and may generate quality cartilage when cultured on 2D and randomly oriented fibrinogen/poly-lactic acid nanofibers compared to 3D sandwich-like environments. The adhering cells show well-developed focal adhesion complexes and actin cytoskeleton arrangements confirming the proper cellular interaction with either random or aligned nanofibers. However, quantitative reverse transcription-polymerase chain reaction analysis for Collagen 2 and Collagen 10 genes expression confirms favorable chondrogenic response of hADMSCs on random nanofibers and shows substantially higher efficacy of their differentiation in 2D configuration versus 3D constructs. These findings introduce a new direction for cartilage tissue engineering through providing a simple platform for the routine generation of transplantable stem cells derived articular cartilage replacement that might improve joint function.
JTD Keywords: Cartilage, Chondrogenic response, Collagen, FBG/PLA nanofibers, Mesenchymal stem cells
Sánchez Egea, Antonio J., Valera, Marius, Parraga Quiroga, Juan Manuel, Proubasta, Ignasi, Noailly, J., Lacroix, Damien, (2014). Impact of hip anatomical variations on the cartilage stress: A finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects Clinical Biomechanics , 29, (4), 444-450
AbstractBackground Hip arthritis is a pathology linked to hip-cartilage degeneration. Although the aetiology of this disease is not well defined, it is known that age is a determinant risk factor. However, hip arthritis in young patients could be largely promoted by biomechanical factors. The objective of this paper is to analyze the impact of some normal anatomical variations on the cartilage stress distributions numerically predicted at the hip joint during walking. Methods A three-dimensional finite element model of the femur and the pelvis with the most relevant axial components of muscle forces was used to simulate normal walking activity. The hip anatomical condition was defined by: neck shaft angle, femoral anteversion angle, and acetabular anteversion angle with a range of 110-130º, 0-20º, and 0-20º, respectively. The direct boundary method was used to simulate the hip contact. Findings The hydrostatic stress found at the cartilage and labrum showed that a ± 10º variation with respect to the reference brings significant differences between the anatomic models. Acetabular anteversion angle of 0º and femoral anteversion angle of 0º were the most affected anatomical conditions with values of hydrostatic stress in the cartilage near 5 MPa under compression. Interpretation Cartilage stresses and contact areas were equivalent to the results found in literature and the most critical anatomical regions in terms of tissue loads were in a good accordance with clinical evidence. Altogether, results showed that decreasing femoral or acetabular anteversion angles isolately causes a dramatic increase in cartilage loads.
JTD Keywords: Hip arthritis, Neck shaft angle, Femoral and acetabular anteversions, Cartilage load, Hip joint contact, Finite element analysis
Santoro, R., Olivares, A. L., Brans, G., Wirz, D., Longinotti, C., Lacroix, D., Martin, I., Wendt, D., (2010). Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing Biomaterials 31, (34), 8946-8952
Apart from partial or total joint replacement, no surgical procedure is currently available to treat large and deep cartilage defects associated with advanced diseases such as osteoarthritis. In this work, we developed a perfusion bioreactor system to engineer human cartilage grafts in a size with clinical relevance for unicompartmental resurfacing of human knee joints (50 mm diameter x 3 mm thick). Computational fluid dynamics models were developed to optimize the flow profile when designing the perfusion chamber. Using the developed system, human chondrocytes could be seeded throughout large 50 mm diameter scaffolds with a uniform distribution. Following two weeks culture, tissues grown in the bioreactor were viable and homogeneously cartilaginous, with biomechanical properties approaching those of native cartilage. In contrast, tissues generated by conventional manual production procedures were highly inhomogeneous and contained large necrotic regions. The unprecedented engineering of human cartilage tissues in this large-scale opens the practical perspective of grafting functional biological substitutes for the clinical treatment for extensive cartilage defects, possibly in combination with surgical or pharmacological therapies to support durability of the implant. Ongoing efforts are aimed at integrating the up-scaled bioreactor based processes within a fully automated and closed manufacturing system for safe, standardized, and GMP compliant production of large-scale cartilage grafts.
JTD Keywords: Bioreactor, Cartilage repair, Computational fluid dynamics, Scale-up, Regenerative medicine, Tissue engineering
Harder, A., Walhorn, V., Dierks, T., Fernàndez-Busquets, X., Anselmetti, D., (2010). Single-molecule force spectroscopy of cartilage aggrecan self-adhesion Biophysical Journal , 99, (10), 3498-3504
We investigated self-adhesion between highly negatively charged aggrecan macromolecules extracted from bovine cartilage extracellular matrix by performing atomic force microscopy (AFM) imaging and single-molecule force spectroscopy (SMFS) in saline solutions. By controlling the density of aggrecan molecules on both the gold substrate and the gold-coated tip surface at submonolayer densities, we were able to detect and quantify the Ca2+-dependent homodimeric interaction between individual aggrecan molecules at the single-molecule level. We found a typical nonlinear sawtooth profile in the AFM force-versus-distance curves with a molecular persistence length of I-p = 0.31 +/- 0.04 nm. This is attributed to the stepwise dissociation of individual glycosaminoglycan (GAG) side chains in aggrecans, which is very similar to the known force fingerprints of other cell adhesion proteoglycan systems. After studying the GAG-GAG dissociation in a dynamic, loading-rate-dependent manner (dynamic SMFS) and analyzing the data according to the stochastic Bell-Evans model for a thermally activated decay of a metastable state under an external force, we estimated for the single glycan interaction a mean lifetime of tau = 7.9 +/- 4.9 s and a reaction bond length of x(beta) = 0.31 +/- 0.08 nm. Whereas the x(beta)-value compares well with values from other cell adhesion carbohydrate recognition motifs in evolutionary distant marine sponge proteoglycans, the rather short GAG interaction lifetime reflects high intermolecular dynamics within aggrecan complexes, which may be relevant for the viscoelastic properties of cartilage tissue.
JTD Keywords: Bovine nasal cartilage, Articular-cartilage, Sinorhizobium-meliloti, Proteoglycan, Microscopy, DNA, Macromolecules, Binding, Protein, Glycosaminoglycans