DONATE

Publications

by Keyword: Cancer treatment

Cassani, M, Fernandes, S, Cruz, JOD, Durikova, H, Vrbsky, J, Patocka, M, Hegrova, V, Klimovic, S, Pribyl, J, Debellis, D, Skladal, P, Cavalieri, F, Caruso, F, Forte, G, (2024). YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles Advanced Science 11, e2302965

Interactions between living cells and nanoparticles are extensively studied to enhance the delivery of therapeutics. Nanoparticles size, shape, stiffness, and surface charge are regarded as the main features able to control the fate of cell-nanoparticle interactions. However, the clinical translation of nanotherapies has so far been limited, and there is a need to better understand the biology of cell-nanoparticle interactions. This study investigates the role of cellular mechanosensitive components in cell-nanoparticle interactions. It is demonstrated that the genetic and pharmacologic inhibition of yes-associated protein (YAP), a key component of cancer cell mechanosensing apparatus and Hippo pathway effector, improves nanoparticle internalization in triple-negative breast cancer cells regardless of nanoparticle properties or substrate characteristics. This process occurs through YAP-dependent regulation of endocytic pathways, cell mechanics, and membrane organization. Hence, the study proposes targeting YAP may sensitize triple-negative breast cancer cells to chemotherapy and increase the selectivity of nanotherapy.© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.

JTD Keywords: cancer treatment, cells, differentiation, hippo pathway, mechanics, mechanobiology, mechanotransduction, nanoparticles, progression, protein, resistance, yap-signaling, yap/taz, Adaptor proteins, signal transducing, Bio-nano interaction, Bio-nano interactions, Breast cancer cells, Cancer cells, Cancer treatment, Cells, Cellular therapeutics, Cellular uptake, Chemotherapy, Cytology, Diseases, Extracellular-matrix, Human, Humans, Mechano-biology, Mechanobiology, Metabolism, Nanoparticle, Nanoparticle interaction, Nanoparticles, Physiology, Protein serine threonine kinase, Protein serine-threonine kinases, Protein signaling, Signal transducing adaptor protein, Signal transduction, Therapeutic effects, Triple negative breast cancer, Triple negative breast neoplasms, Triple-negative breast cancers, Yap-signaling, Yes-associated protein-signaling


Manzano-Muñoz A, Yeste J, Ortega MA, Samitier J, Ramón-Azcón J, Montero J, (2024). A New Microfluidic Device to Facilitate Functional Precision Medicine Assays Methods In Molecular Biology 2748, 99-108

Functional precision medicine (FPM) has emerged as a new approach to improve cancer treatment. Despite its potential, FPM assays present important limitations such as the number of cells and trained personnel required. To overcome these impediments, here we describe a novel microfluidic platform that can be used to perform FPM assays, optimizing the use of primary cancer cells and simplifying the process by using microfluidics to automatize the process.© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

JTD Keywords: Bioassay, Biological assay, Cancer treatment, Functional assays, Lab-on-a-chip devices, Microfluidics, Personalized medicine, Precision medicine


Gallo, J, Villasante, A, (2023). Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment International Journal Of Molecular Sciences 24, 15484

Nanomedicine presents innovative solutions for cancer treatment, including photothermal therapy (PTT). PTT centers on the design of photoactivatable nanoparticles capable of absorbing non-toxic near-infrared light, generating heat within target cells to induce cell death. The successful transition from benchside to bedside application of PTT critically depends on the core properties of nanoparticles responsible for converting light into heat and the surface properties for precise cell-specific targeting. Precisely targeting the intended cells remains a primary challenge in PTT. In recent years, a groundbreaking approach has emerged to address this challenge by functionalizing nanocarriers and enhancing cell targeting. This strategy involves the creation of biomimetic nanoparticles that combine desired biocompatibility properties with the immune evasion mechanisms of natural materials. This review comprehensively outlines various strategies for designing biomimetic photoactivatable nanocarriers for PTT, with a primary focus on its application in cancer therapy. Additionally, we shed light on the hurdles involved in translating PTT from research to clinical practice, along with an overview of current clinical applications.

JTD Keywords: biomimetic nanoparticles, cancer treatment, diagnosis, drug-delivery, erythrocyte-membrane, facile synthesis, iron-oxide nanoparticles, magnetic nanoparticles, membrane-camouflaged nanoparticles, metastatic breast-cancer, size, stem-cells, Biomimetic nanoparticles, Cancer treatment, Membrane-camouflaged nanoparticles, Photothermal therapy


De Lama-Odría, MD, del Valle, LJ, Puiggalí, J, (2023). Lanthanides-Substituted Hydroxyapatite for Biomedical Applications International Journal Of Molecular Sciences 24, 3446

Lately, there has been an increasing demand for materials that could improve tissue regenerative therapies and provide antimicrobial effects. Similarly, there is a growing need to develop or modify biomaterials for the diagnosis and treatment of different pathologies. In this scenario, hydroxyapatite (HAp) appears as a bioceramic with extended functionalities. Nevertheless, there are certain disadvantages related to the mechanical properties and lack of antimicrobial capacity. To circumvent them, the doping of HAp with a variety of cationic ions is emerging as a good alterative due to the different biological roles of each ion. Among many elements, lanthanides are understudied despite their great potential in the biomedical field. For this reason, the present review focuses on the biological benefits of lanthanides and how their incorporation into HAp can alter its morphology and physical properties. A comprehensive section of the applications of lanthanides-substituted HAp nanoparticles (HAp NPs) is presented to unveil the potential biomedical uses of these systems. Finally, the need to study the tolerable and non-toxic percentages of substitution with these elements is highlighted.

JTD Keywords: biolabeling, biomedicine, biosensors, bone regeneration, calcium, cancer treatment, cationic ions, cell imaging, cerium, doped hap, hydroxyapatite, implants, in-vitro bioactivity, lanthanides-substitutions, lanthanidessubstitutions, nanoparticles, radiation synovectomy, sm-153 particulate hydroxyapatite, structural-characterization, theragnostics, theranostic nanoplatforms, Europium-doped hydroxyapatite, Hydroxyapatite, Theragnostics


Andrade, F, Roca-Melendres, MM, Llaguno, M, Hide, D, Raurell, I, Martell, M, Vijayakumar, S, Oliva, M, Schwartz, S, Duran-Lara, EF, Rafael, D, Abasolo, I, (2022). Smart and eco-friendly N-isopropylacrylamide and cellulose hydrogels as a safe dual-drug local cancer therapy approach Carbohydrate Polymers 295, 119859

Local cancer treatment by in situ injections of thermo-responsive hydrogels (HG) offers several advantages over conventional systemic anti-cancer treatments. In this work, a biodegradable and multicompartmental HG composed of N-isopropylacrylamide, cellulose, citric acid, and ceric ammonium nitrate was developed for the controlled release of hydrophilic (doxorubicin) and hydrophobic (niclosamide) drugs. The formulation presented ideal properties regarding thermo-responsiveness, rheological behavior, drug release profile, biocompatibility, and biological activity in colon and ovarian cancer cells. Cellulose was found to retard drugs release rate, being only 4 % of doxorubicin and 30 % of niclosamide released after 1 week. This low release was sufficient to cause cell death in both cell lines. Moreover, HG demonstrated a proper injectability, in situ prevalence, and safety profile in vivo. Overall, the HG properties, together with its natural and eco-friendly composition, create a safe and efficient platform for the local treatment of non-resectable tumors or tumors requiring pre-surgical adjuvant therapy.

JTD Keywords: biodegradable, cellulose, controlled-release formulation, drug delivery systems, hydrogel, thermo-responsiveness, Ammonium-nitrate, Biodegradable, Cancer treatment, Cellulose, Controlled-release formulation, Delivery, Drug delivery systems, Hydrogel, Reduce, Thermo-responsiveness