DONATE

Publications

by Keyword: host-pathogen interaction

García-Díaz, M, Cendra, MD, Alonso-Roman, R, Urdániz, M, Torrents, E, Martínez, E, (2022). Mimicking the Intestinal Host–Pathogen Interactions in a 3D In Vitro Model: The Role of the Mucus Layer Pharmaceutics 14, 1552

The intestinal mucus lines the luminal surface of the intestinal epithelium. This mucus is a dynamic semipermeable barrier and one of the first-line defense mechanisms against the outside environment, protecting the body against chemical, mechanical, or biological external insults. At the same time, the intestinal mucus accommodates the resident microbiota, providing nutrients and attachment sites, and therefore playing an essential role in the host–pathogen interactions and gut homeostasis. Underneath this mucus layer, the intestinal epithelium is organized into finger-like protrusions called villi and invaginations called crypts. This characteristic 3D architecture is known to influence the epithelial cell differentiation and function. However, when modelling in vitro the intestinal host–pathogen interactions, these two essential features, the intestinal mucus and the 3D topography are often not represented, thus limiting the relevance of the models. Here we present an in vitro model that mimics the small intestinal mucosa and its interactions with intestinal pathogens in a relevant manner, containing the secreted mucus layer and the epithelial barrier in a 3D villus-like hydrogel scaffold. This 3D architecture significantly enhanced the secretion of mucus. In infection with the pathogenic adherent invasive E. coli strain LF82, characteristic of Crohn’s disease, we observed that this secreted mucus promoted the adhesion of the pathogen and at the same time had a protective effect upon its invasion. This pathogenic strain was able to survive inside the epithelial cells and trigger an inflammatory response that was milder when a thick mucus layer was present. Thus, we demonstrated that our model faithfully mimics the key features of the intestinal mucosa necessary to study the interactions with intestinal pathogens.

JTD Keywords: 3d in vitro models, barrier function, bile-salts, cells, drug-delivery, host-pathogen interaction, host–pathogen interaction, hydrogels, ileal mucosa, infection, intestinal models, intestinal mucus, microbiome, patient, responses, 3d in vitro models, Intestinal mucus, Invasive escherichia-coli


Del Mar Cendra, Maria, Torrents, Eduard, (2020). Differential adaptability between reference strains and clinical isolates of Pseudomonas aeruginosa into the lung epithelium intracellular lifestyle Virulence 11, (1), 862-876

Intracellular invasion is an advantageous mechanism used by pathogens to evade host defense and antimicrobial therapy. In patients, the intracellular microbial lifestyle can lead to infection persistence and recurrence, thus worsening outcomes. Lung infections caused by Pseudomonas aeruginosa, especially in cystic fibrosis (CF) patients, are often aggravated by intracellular invasion and persistence of the pathogen. Proliferation of the infectious species relies on a continuous deoxyribonucleotide (dNTP) supply, for which the ribonucleotide reductase enzyme (RNR) is the unique provider. The large genome plasticity of P. aeruginosa and its ability to rapidly adapt to different environments are challenges for studying the pathophysiology associated with this type of infection. Using different reference strains and clinical isolates of P. aeruginosa independently combined with alveolar (A549) and bronchial (16HBE14o- and CF-CFBE41o-) epithelial cells, we analyzed host–pathogen interactions and intracellular bacterial persistence with the aim of determining a cell type-directed infection promoted by the P. aeruginosa strains. The oscillations in cellular toxicity and oxygen consumption promoted by the intracellular persistence of the strains were also analyzed among the different infectious lung models. Significantly, we identified class II RNR as the enzyme that supplies dNTPs to intracellular P. aeruginosa. This discovery could contribute to the development of RNR-targeted strategies against the chronicity occurring in this type of lung infection. Overall our study demonstrates that the choice of bacterial strain is critical to properly study the type of infectious process with relevant translational outcomes.

JTD Keywords: Pseudomonas aeruginosa, Intracellular persistence, Lung, Epithelial cells, Clinical isolates, Host-pathogen interactions, Intracellular lifestyle, Chronic infections, Cystic fibrosis, Ribonucleotide reductase