DONATE

Publications

by Keyword: lysosomal delivery

Muntimadugu, E, Silva-Abreu, M, Vives, G, Loeck, M, Pham, V, Del Moral, M, Solomon, M, Muro, S, (2022). Comparison between Nanoparticle Encapsulation and Surface Loading for Lysosomal Enzyme Replacement Therapy International Journal Of Molecular Sciences 23, 4034

Poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) enhance the delivery of therapeutic enzymes for replacement therapy of lysosomal storage disorders. Previous studies examined NPs encapsulating or coated with enzymes, but these formulations have never been compared. We examined this using hyaluronidase (HAse), deficient in mucopolysaccharidosis IX, and acid sphingomyelinase (ASM), deficient in types A–B Niemann–Pick disease. Initial screening of size, PDI, ζ potential, and loading resulted in the selection of the Lactel II co-polymer vs. Lactel I or Resomer, and Pluronic F68 surfactant vs. PVA or DMAB. Enzyme input and addition of carrier protein were evaluated, rendering NPs having, e.g., 181 nm diameter, 0.15 PDI, −36 mV ζ potential, and 538 HAse molecules encapsulated per NP. Similar NPs were coated with enzyme, which reduced loading (e.g., 292 HAse molecules/NP). NPs were coated with targeting antibodies (> 122 molecules/NP), lyophilized for storage without alterations, and acceptably stable at physiological conditions. NPs were internalized, trafficked to lysosomes, released active enzyme at lysosomal conditions, and targeted both peripheral organs and the brain after i.v. administration in mice. While both formulations enhanced enzyme delivery compared to free enzyme, encapsulating NPs surpassed coated counterparts (18.4- vs. 4.3-fold enhancement in cells and 6.2- vs. 3-fold enhancement in brains), providing guidance for future applications.

JTD Keywords: active enzymes, encapsulation, enhanced delivery, enzyme therapeutics, formulation parameters, icam-1 targeting, icam-1-targeted nanocarriers, in vivo biodistribution, in-vitro, lysosomal delivery, model, oral delivery, plga nanoparticles, poly(lactic-co-glycolic acid) nanoparticles, protein therapeutics, surface loading, Acid sphingomyelinase, Enzyme therapeutics, Surface loading


Giannotti, M. I., Abasolo, Ibane, Oliva, Mireia, Andrade, Fernanda, García-Aranda, Natalia, Melgarejo, Marta, Pulido, Daniel, Corchero, José Luis, Fernández, Yolanda, Villaverde, Antonio, Royo, Miriam, Garcia-Parajo, Maria F., Sanz, Fausto, Schwartz Jr, Simó, (2016). Highly versatile polyelectrolyte complexes for improving the enzyme replacement therapy of lysosomal storage disorders ACS Applied Materials & Interfaces 8, (39), 25741–25752

Lysosomal storage disorders are currently treated by enzyme replacement therapy (ERT) through the direct administration of the unprotected recombinant protein to the patients. Herein we present an ionically cross-linked polyelectrolyte complex (PEC) composed of trimethyl chitosan (TMC) and α-galactosidase A (GLA), the defective enzyme in Fabry disease, with the capability of directly targeting endothelial cells by incorporating peptide ligands containing the RGD sequence. We assessed the physicochemical properties, cytotoxicity, and hemocompatibility of RGD-targeted and untargeted PECs, the uptake by endothelial cells and the intracellular activity of PECs in cell culture models of Fabry disease. Moreover, we also explored the effect of different freeze-drying procedures in the overall activity of the PECs. Our results indicate that the use of integrin-binding RGD moiety within the PEC increases their uptake and the efficacy of the GLA enzyme, while the freeze-drying allows the activity of the therapeutic protein to remain intact. Overall, these results highlight the potential of TMC-based PECs as a highly versatile and feasible drug delivery system for improving the ERT of lysosomal storage disorders.

JTD Keywords: Enzyme replacement therapy, Fabry disease, Lysosomal delivery, Nanomedicine, Polyelectrolyte complexes, Trimethyl chitosan, α-galactosidase A