DONATE

Publications

by Keyword: micromechanical properties

Narciso, M, Martínez, A, Júnior, C, Díaz-Valdivia, N, Ulldemolins, A, Berardi, M, Neal, K, Navajas, D, Farré, R, Alcaraz, J, Almendros, I, Gavara, N, (2023). Lung Micrometastases Display ECM Depletion and Softening While Macrometastases Are 30-Fold Stiffer and Enriched in Fibronectin Cancers 15, 2404

Mechanical changes in tumors have long been linked to increased malignancy and therapy resistance and attributed to mechanical changes in the tumor extracellular matrix (ECM). However, to the best of our knowledge, there have been no mechanical studies on decellularized tumors. Here, we studied the biochemical and mechanical progression of the tumor ECM in two models of lung metastases: lung carcinoma (CAR) and melanoma (MEL). We decellularized the metastatic lung sections, measured the micromechanics of the tumor ECM, and stained the sections for ECM proteins, proliferation, and cell death markers. The same methodology was applied to MEL mice treated with the clinically approved anti-fibrotic drug nintedanib. When compared to healthy ECM (~0.40 kPa), CAR and MEL lung macrometastases produced a highly dense and stiff ECM (1.79 ± 1.32 kPa, CAR and 6.39 ± 3.37 kPa, MEL). Fibronectin was overexpressed from the early stages (~118%) to developed macrometastases (~260%) in both models. Surprisingly, nintedanib caused a 4-fold increase in ECM-occupied tumor area (5.1 ± 1.6% to 18.6 ± 8.9%) and a 2-fold in-crease in ECM stiffness (6.39 ± 3.37 kPa to 12.35 ± 5.74 kPa). This increase in stiffness strongly correlated with an increase in necrosis, which reveals a potential link between tumor hypoxia and ECM deposition and stiffness. Our findings highlight fibronectin and tumor ECM mechanics as attractive targets in cancer therapy and support the need to identify new anti-fibrotic drugs to abrogate aberrant ECM mechanics in metastases.

JTD Keywords: atomic force microscopy, basement membrane, breast-cancer, decellularization, expression, extracellular matrix, extracellular-matrix, fibronectin, intermittent hypoxia, lung carcinoma, lung metastases, melanoma, metastatic niche formation, micromechanical properties, nintedanib, signature, stiffness, tumor-growth, Colorectal-cancer progression, Lung metastases, Stiffness


Júnior, C, Ulldemolins, A, Narciso, M, Almendros, I, Farré, R, Navajas, D, López, J, Eroles, M, Rico, F, Gavara, N, (2023). Multi-Step Extracellular Matrix Remodelling and Stiffening in the Development of Idiopathic Pulmonary Fibrosis International Journal Of Molecular Sciences 24, 1708

The extracellular matrix (ECM) of the lung is a filamentous network composed mainly of collagens, elastin, and proteoglycans that provides structural and physical support to its populating cells. Proliferation, migration and overall behaviour of those cells is greatly determined by micromechanical queues provided by the ECM. Lung fibrosis displays an aberrant increased deposition of ECM which likely changes filament organization and stiffens the ECM, thus upregulating the profibrotic profile of pulmonary cells. We have previously used AFM to assess changes in the Young’s Modulus (E) of the ECM in the lung. Here, we perform further ECM topographical, mechanical and viscoelastic analysis at the micro- and nano-scale throughout fibrosis development. Furthermore, we provide nanoscale correlations between topographical and elastic properties of the ECM fibres. Firstly, we identify a softening of the ECM after rats are instilled with media associated with recovery of mechanical homeostasis, which is hindered in bleomycin-instilled lungs. Moreover, we find opposite correlations between fibre stiffness and roughness in PBS- vs bleomycin-treated lung. Our findings suggest that changes in ECM nanoscale organization take place at different stages of fibrosis, with the potential to help identify pharmacological targets to hinder its progression.

JTD Keywords: atomic force microscopy, cells, deposition, extracellular matrix, idiopathic pulmonary fibrosis, mechanisms, mechanosensing, membranes, micromechanical properties, pathogenesis, stiffness, tissues, viscoelasticity, Extracellular matrix, Induced lung fibrosis, Mechanosensing