IBEC’s newest junior group leader: Vito Conte

Vito’s in silico models will have realistic geometries and material properties, such as anisotropy, heterogeneity, poroelasticity, and non-linear viscoelasticity. These models will allow the group to make predictive biomechanical analyses of organisms by studying the necessary and sufficient conditions needed for their normal development – and, on the other hand, for disease to emerge – in environments that are very close to real conditions.

“Our current investigations are focusing on the mechanics of cancer progression,” explains Vito. “There is growing evidence that cancer progression alters the mechanical properties of affected cells and tissues. However, we don’t know whether these alterations feed back into the cancer progression; if they do, they may represent a way to hinder or stop the disease biomechanically.” By revealing the interplay between mechanics and malignancy of tissues, the group will identify new biomechanical markers or physical mechanisms of cancer progression that could be targeted clinically to prevent and treat the disease – for example, the rigidity of tumorous tissues as opposed to the softness of cancer cells.

Another area of interest for Vito and his group is the interplay between the mechanics of antibiotics action and bacterial resistance, which could potentially lead towards therapies aimed at decreasing bacterial resistance to known drugs, as well as aiding the design of new ones. “The growing consensus is that some antibiotic drugs kill bacteria through biochemical events that might possibly involve mechanical processes, such as force generation at the bacterial cell envelope,” Vito says. “As bacteria have selectively evolved resistance to antibiotics via increasingly sophisticated mechanisms, these processes may ultimately result in a change of the mechanical properties of these prokaryotic microorganisms, thus offering a potential way to decrease organism resistance or increase drug efficiency.”

Vito is already working with the group of Lorenzo Albertazzi, another IBEC newcomer, on this project, but he’s keen to strike up collaborations with other groups at the institute and elsewhere, as well as with clinicians and industry partners. “I’m very happy to share my expertise in biomechanical quantification of biological phenomena,” he says. “For quantification we need data, so that’s a good place to start!”

For now, Vito is concentrating on building his group and settling into his new position. “When you’ve sprung from such a big tree as Xavier Trepat, it’s a challenge to put down your own roots,” he says. “I’m delighted to have this fantastic opportunity to start my independent research group at IBEC, both to make my own contribution to its scientific reputation, but also to make the most of the opportunities it offers to carry out multidisciplinary work, build strong collaborations, and develop basic research results into products that benefit society.”