Staff member publications
Maleeva, Galyna, Nin-Hill, Alba, Wirth, Ulrike, Rustler, Karin, Ranucci, Matteo, Opar, Ekin, Rovira, Carme, Bregestovski, Piotr, Zeilhofer, Hanns Ulrich, Koenig, Burkhard, Alfonso-Prieto, Mercedes, Gorostiza, Pau, (2024). Light-Activated Agonist-Potentiator of GABAA Receptors for Reversible Neuroinhibition in Wildtype Mice Journal Of The American Chemical Society 146, 28822-28831
Gamma aminobutyric acid type A receptors (GABA(A)Rs) play a key role in the mammalian central nervous system (CNS) as drivers of neuroinhibitory circuits, which are commonly targeted for therapeutic purposes with potentiator drugs. However, due to their widespread expression and strong inhibitory action, systemic pharmaceutical potentiation of GABA(A)Rs inevitably causes adverse effects regardless of the drug selectivity. Therefore, therapeutic guidelines must often limit or exclude clinically available GABA(A)R potentiators, despite their high efficacy, good biodistribution, and favorable molecular properties. One solution to this problem is to use drugs with light-dependent activity (photopharmacology) in combination with on-demand, localized illumination. However, a suitable light-activated potentiator of GABA(A)Rs has been elusive so far for use in wildtype mammals. We have met this need by developing azocarnil, a diffusible GABAergic agonist-potentiator based on the anxiolytic drug abecarnil that is inactive in the dark and activated by visible violet light. Azocarnil can be rapidly deactivated with green light and by thermal relaxation in the dark. We demonstrate that it selectively inhibits neuronal currents in hippocampal neurons in vitro and in the dorsal horns of the spinal cord of mice, decreasing the mechanical sensitivity as a function of illumination without displaying systemic adverse effects. Azocarnil expands the in vivo photopharmacological toolkit with a novel chemical scaffold and achieves a milestone toward future phototherapeutic applications to safely treat muscle spasms, pain, anxiety, sleep disorders, and epilepsy.
JTD Keywords: A receptor, Abecarnil, Affinity, Beta-carboline, Efficacy, Modulator, Optical control, Pain, Site, Subtype
Gerwe, Hubert, Schaller, Eva, Sortino, Rosalba, Opar, Ekin, Martinez-Tambella, Joaquin, Bermudez, Marcel, Lane, J Robert, Gorostiza, Pau, Decker, Michael, (2024). Photo-BQCA: Positive Allosteric Modulators Enabling Optical Control of the M1 Receptor Angewandte Chemie (International Ed. Print) , e202411438
The field of G protein-coupled receptor (GPCR) research has greatly benefited from the spatiotemporal resolution provided by light controllable, i.e., photoswitchable ligands. Most of the developed tools have targeted the Rhodopsin-like family (Class A), the largest family of GPCRs. However, to date, all such Class A photoswitchable ligands were designed to act at the orthosteric binding site of these receptors. Herein, we report the development of the first photoswitchable allosteric modulators of Class A GPCRs, designed to target the M-1 muscarinic acetylcholine receptor. The presented benzyl quinolone carboxylic acid (BQCA) derivatives, Photo-BQCisA and Photo-BQCtrAns, exhibit complementary photopharmacological behavior and allow reversible control of the receptor using light as an external stimulus. This makes them valuable tools to further investigate M-1 receptor signaling and a proof of concept for photoswitchable allosteric modulators at Class A receptors.
JTD Keywords: Agonist, Allosterism, Gpcr, Muscarinic ligands, Photopharmacology, Photoswitc, Selective activation, Serie
Camerin, Luisa, Maleeva, Galyna, Gomila, Alexandre M J, Suarez-Pereira, Irene, Matera, Carlo, Prischich, Davia, Opar, Ekin, Riefolo, Fabio, Berrocoso, Esther, Gorostiza, Pau, (2024). Photoswitchable Carbamazepine Analogs for Non-Invasive Neuroinhibition In Vivo Angewandte Chemie (International Ed. Print) 63, e202403636
A problem of systemic pharmacotherapy is off-target activity, which causes adverse effects. Outstanding examples include neuroinhibitory medications like antiseizure drugs, which are used against epilepsy and neuropathic pain but cause systemic side effects. There is a need of drugs that inhibit nerve signals locally and on-demand without affecting other regions of the body. Photopharmacology aims to address this problem with light-activated drugs and localized illumination in the target organ. Here, we have developed photoswitchable derivatives of the widely prescribed antiseizure drug carbamazepine. For that purpose, we expanded our method of ortho azologization of tricyclic drugs to meta/para and to N-bridged diazocine. Our results validate the concept of ortho cryptoazologs (uniquely exemplified by Carbazopine-1) and bring to light Carbadiazocine (8), which can be photoswitched between 400-590 nm light (using violet LEDs and halogen lamps) and shows good drug-likeness and predicted safety. Both compounds display photoswitchable activity in vitro and in translucent zebrafish larvae. Carbadiazocine (8) also offers in vivo analgesic efficacy (mechanical and thermal stimuli) in a rat model of neuropathic pain and a simple and compelling treatment demonstration with non-invasive illumination.
JTD Keywords: Antiepileptic drugs, Anxiet, Azobenzene, Diazocine, Epileps, Ion channels, Neuromodulation, Optical control, Pain, Photopharmacology, Rat, Receptors, Release, Spatiotemporal control, Tricyclic drugs, Zebrafish
Yazici, N, Opar, E, Kodal, M, Tanören, B, Sezen, M, Özkoc, G, (2022). A novel practical approach for monitoring the crosslink density of an ethylene propylene diene monomer compound: Complementary scanning acoustic microscopy and FIB-SEM-EDS analyses Polymers & Polymer Composites 30, 9673911221074192
Tuning of the crosslink density (CLD) in the rubber compounds is very crucial for optimizing the physical and mechanical properties of the ultimate rubber products. Conventionally, CLD can be measured via rheological methods such as moving die rheometer (MDR), via mechanical tests such as temperature scanning stress relaxation analysis (TSSR), or via direct swelling experiments using Flory–Rehner approach. In the current study, two novel techniques, focused ion beam - scanning electron microscopy (FIB-SEM) processing, with simultaneous energy dispersive X-ray spectrometry (EDS) mapping analysis and scanning acoustic microscopy (SAM) were combined and correlated to conventional methods on a model recipe of ethylene propylene diene monomer (EPDM) compound having different sulphur contents. Depending on the applied technique, the increase in the crosslink density with sulphur content was found to be 1.7 fold for the Flory–Rehner approach and 1.2 fold for both TSSR and MDR. It is directly monitored from the FIB-SEM-EDS analysis that the sulphur distribution and agglomeration behavior increased in line with ZnO content, which is an indirect indication of the rise in crosslink density. The impedance maps of the crosslinked samples obtained through SAM analysis revealed that the impedance of the samples increased with the increasing sulphur content, which can be attributed to higher level of crosslink density. A quantified correlation was obtained between SAM images and the crosslink density of the samples. It was shown that SAM is a promising tool for practical and non-destructive analysis for determining the formation of crosslink density of the rubbers. © The Author(s) 2022.
JTD Keywords: blends, compressibility, crosslink density, cure characteristics, ethylene propylene diene monomer, focused ion beam, mechanical-properties, morphology, natural-rubber, particles, scanning acoustic microscopy, scanning electron microscopy, sulfur, thermal-stability, vulcanization, Composite soft materials, Cross-link densities, Crosslink density, Crosslinking, Density (specific gravity), Ethylene, Ethylene propylene diene monomer, Flory-rehner, Focused ion beam - scanning electron microscopy, Focused ion beam-scanning electron microscopies, Ii-vi semiconductors, Monomers, Moving die rheometers, Physical and mechanical properties, Propylene, Relaxation analysis, Rubber, Scanning acoustic microscopy, Scanning electron microscopy, Stress relaxation, Sulfur contents, Temperature scanning stress relaxations, Zinc oxide