DONATE

Publications

by Keyword: Azobenzene

Sortino, R, Cunquero, M, Castro-Olvera, G, Gelabert, R, Moreno, M, Riefolo, F, Matera, C, Fernàndez-Castillo, N, Agnetta, L, Decker, M, Lluch, JM, Hernando, J, Loza-Alvarez, P, Gorostiza, P, (2023). Three-Photon Infrared Stimulation of Endogenous Neuroreceptors in Vivo Angewandte Chemie (International Ed. Print) 62, e202311181

To interrogate neural circuits and crack their codes, in vivo brain activity imaging must be combined with spatiotemporally precise stimulation in three dimensions using genetic or pharmacological specificity. This challenge requires deep penetration and focusing as provided by infrared light and multiphoton excitation, and has promoted two-photon photopharmacology and optogenetics. However, three-photon brain stimulation in vivo remains to be demonstrated. We report the regulation of neuronal activity in zebrafish larvae by three-photon excitation of a photoswitchable muscarinic agonist at 50 pM, a billion-fold lower concentration than used for uncaging, and with mid-infrared light of 1560 nm, the longest reported photoswitch wavelength. Robust, physiologically relevant photoresponses allow modulating brain activity in wild-type animals with spatiotemporal and pharmacological precision. Computational calculations predict that azobenzene-based ligands have high three-photon absorption cross-section and can be used directly with pulsed infrared light. The expansion of three-photon pharmacology will deeply impact basic neurobiology and neuromodulation phototherapies.© 2023 Wiley-VCH GmbH.

JTD Keywords: absorption, azobenzene photoswitches, deep, glutamate-receptor, intravital microscopy, multiphoton excitation, muscarinic neuromodulation, photopharmacology, two-photon lithography and polymerization, 2-photon excitation, Azobenzene, Multiphoton excitation, Muscarinic neuromodulation, Photopharmacology, Photopharmacology, azobenzene, muscarinic neuromodulation, multiphoton excitation, two-photon lithography and polymerization, Two-photon lithography and polymerization


Prischich, D, Camarero, N, del Dedo, JE, Cambra-Pellejà, M, Prat, J, Nevola, L, Martín-Quirós, A, Rebollo, E, Pastor, L, Giralt, E, Geli, MI, Gorostiza, P, (2023). Light-dependent inhibition of clathrin-mediated endocytosis in yeast unveils conserved functions of the AP2 complex Iscience 26, 107899

Clathrin-mediated endocytosis (CME) is an essential cellular process, conserved among eukaryotes. Yeast constitutes a powerful genetic model to dissect the complex endocytic machinery, yet there is a lack of specific pharmacological agents to interfere with CME in these organisms. TL2 is a light-regulated peptide inhibitor targeting the AP2-β-adaptin/β-arrestin interaction and that can photocontrol CME with high spatiotemporal precision in mammalian cells. Here, we study endocytic protein dynamics by live-cell imaging of the fluorescently tagged coat-associated protein Sla1-GFP, demonstrating that TL2 retains its inhibitory activity in S. cerevisiae spheroplasts. This is despite the β-adaptin/β-arrestin interaction not being conserved in yeast. Our data indicate that the AP2 α-adaptin is the functional target of activated TL2. We identified as interacting partners for the α-appendage, the Eps15 and epsin homologues Ede1 and Ent1. This demonstrates that endocytic cargo loading and sensing can be executed by conserved molecular interfaces, regardless of the proteins involved.© 2023 The Author(s).

JTD Keywords: adapters, alpha-appendage, azobenzene, cross-linker, mechanism, peptides, proteins, receptor, trafficking, Actin polymerization, Biochemistry, Biological sciences, Cell biology, Molecular biology, Natural sciences


Pujals, S, Albertazzi, L, Fuentes, E, Gabaldon, Y, Collado, M, Dhiman, S, (2022). Supramolecular Stability of Benzene-1,3,5-tricarboxamide Supramolecular Polymers in Biological Media: Beyond the Stability-Responsiveness Trade-off Journal Of The American Chemical Society 144, 21196-21205

Supramolecular assemblies have been gaining attention in recent years in the field of drug delivery because of their unique formulation possibilities and adaptive behavior. Their non-covalent nature allows for their self-assembly formulation and responsiveness to stimuli, an appealing feature to trigger a therapeutic action with spatiotemporal control. However, facing in vivo conditions is very challenging for non-covalent structures. Dilution and proteins in blood can have a direct impact on self assembly, destabilizing the supramolecules and leading to a premature and uncontrolled cargo release. To rationalize this behavior, we designed three monomers exhibiting distinct hydrophobic cores that self-assemble into photo-responsive fibers. We estimated their stability-responsiveness tradeoff in vitro, finding two well-separated regimes. These are low-robustness regime, in which the system equilibrates quickly and responds readily to stimuli, and high-robustness regime, in which the system equilibrates slowly and is quite insensitive to stimuli. We probed the performance of both regimes in a complex environment using Fo''rster resonance energy transfer (FRET). Interestingly, the stability-responsiveness trade-off defines perfectly the extent of disassembly caused by dilution but not the one caused by protein interaction. This identifies a disconnection between intrinsic supramolecular robustness and supramolecular stability in the biological environment, strongly influenced by the disassembly pathway upon protein interaction. These findings shed light on the key features to address for supramolecular stability in the biological environment.

JTD Keywords: Azobenzene, Critical micellization, Fret, Guide, Nanoparticles, Ph, Photoisomerization, Polymerization, Shape, Water


Matera, C, Calvé, P, Casadó-Anguera, V, Sortino, R, Gomila, AMJ, Moreno, E, Gener, T, Delgado-Sallent, C, Nebot, P, Costazza, D, Conde-Berriozabal, S, Masana, M, Hernando, J, Casadó, V, Puig, MV, Gorostiza, P, (2022). Reversible Photocontrol of Dopaminergic Transmission in Wild-Type Animals International Journal Of Molecular Sciences 23, 10114

Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circuits have limited specificity, reversibility, resolution, or require genetic manipulation. Here, we introduce azodopa, a novel photoswitchable ligand that enables reversible spatiotemporal control of dopaminergic transmission. We demonstrate that azodopa activates D1-like receptors in vitro in a light-dependent manner. Moreover, it enables reversibly photocontrolling zebrafish motility on a timescale of seconds and allows separating the retinal component of dopaminergic neurotransmission. Azodopa increases the overall neural activity in the cortex of anesthetized mice and displays illumination-dependent activity in individual cells. Azodopa is the first photoswitchable dopamine agonist with demonstrated efficacy in wild-type animals and opens the way to remotely controlling dopaminergic neurotransmission for fundamental and therapeutic purposes.

JTD Keywords: azobenzene, behavior, brainwave, d-1, dopamine, gpcr, in vivo electrophysiology, inhibitors, optogenetics, optopharmacology, photochromism, photopharmacology, photoswitch, stimulation, zebrafish, Azobenzene, Receptors, Zebrafish


Castagna, R, Kolarski, D, Durand-de Cuttoli, R, Maleeva, G, (2022). Orthogonal Control of Neuronal Circuits and Behavior Using Photopharmacology Journal Of Molecular Neuroscience 72, 1433-1442

Over the last decades, photopharmacology has gone far beyond its proof-of-concept stage to become a bona fide approach to study neural systems in vivo. Indeed, photopharmacological control has expanded over a wide range of endogenous targets, such as receptors, ion channels, transporters, kinases, lipids, and DNA transcription processes. In this review, we provide an overview of the recent progresses in the in vivo photopharmacological control of neuronal circuits and behavior. In particular, the use of small aquatic animals for the in vivo screening of photopharmacological compounds, the recent advances in optical modulation of complex behaviors in mice, and the development of adjacent techniques for light and drug delivery in vivo are described.

JTD Keywords: brain circuits, circadian rhythm, in vivo photomodulation, in vivo technology, neuronal receptors, Architecture, Azobenzene photoswitches, Brain circuits, Channels, Circadian rhythm, In vivo photomodulation, In vivo technology, Light, Modulator, Neuronal receptors, Optical control, Optogenetics, Pharmacology, Photopharmacology, Receptors, Systems


Garrido-Charles, A, Huet, A, Matera, C, Thirumalai, A, Hernando, J, Llebaria, A, Moser, T, Gorostiza, P, (2022). Fast Photoswitchable Molecular Prosthetics Control Neuronal Activity in the Cochlea Journal Of The American Chemical Society 144, 9229-9239

Artificial control of neuronal activity enables the study of neural circuits and restoration of neural functions. Direct, rapid, and sustained photocontrol of intact neurons could overcome the limitations of established electrical stimulation such as poor selectivity. We have developed fast photoswitchable ligands of glutamate receptors (GluRs) to enable neuronal control in the auditory system. The new photoswitchable ligands induced photocurrents in untransfected neurons upon covalently tethering to endogenous GluRs and activating them reversibly with visible light pulses of a few milliseconds. As a proof of concept of these molecular prostheses, we applied them to the ultrafast synapses of auditory neurons of the cochlea that encode sound and provide auditory input to the brain. This drug-based method afforded the optical stimulation of auditory neurons of adult gerbils at hundreds of hertz without genetic manipulation that would be required for their optogenetic control. This indicates that the new photoswitchable ligands are also applicable to the spatiotemporal control of fast spiking interneurons in the brain.

JTD Keywords: Acid, Azobenzene, Glutamate-receptor, Ion channels, Mechanisms, Nerve, Optical switches, Release, Stimulation


Gorostiza, P., Isacoff, E.Y., (2011). Photoswitchable ligand-gated ion channels Photosensitive molecules for controlling biological function (ed. Chambers, J. J. , Kramer, R. H.), Springer (Saskatoon, Canada) 55, 267-285

Ligand-activated proteins can be controlled with light by means of synthetic photoisomerizable tethered ligands (PTLs). The application of PTLs to ligand-gated ion channels, including the nicotinic acetylcholine receptor and ionotropic glutamate receptors, is reviewed with emphasis on rational photoswitch design and the mechanisms of optical switching. Recently reported molecular dynamic methods allow simulation with high reliability of novel PTLs for any ligand-activated protein whose structure is known.

JTD Keywords: Nicotinic acetylcholine receptor, Kainate receptor, Glutamate receptor, Photoisomerizable tether ligand (PTL), Optical switch, Nanotoggle, Azobenzene, Neurobiology,, Nanoengineering, Nanomedicine