DONATE

Publications

Access IBEC scientific production portal (IBEC CRIS), for more detailed information and advanced search features.

Find here the list of all IBEC's publications by year.

by Keyword: Acoustic propulsion

Padial, TP, Chen, SQ, Hortelao, AC, Sen, A, Sánchez, S, (2025). Swarming intelligence in self-propelled micromotors and nanomotors Nature Reviews Materials 10, 947-963

Living organisms, from single cells to multicellular systems, are capable of moving as a response to local stimuli using swarming intelligence, a trait researchers aim to replicate in artificial systems. Common strategies observed in natural swarms include motility towards specific signals from the environment, communication among individual units, coordination and cooperation to achieve complex tasks. Inspired by these features, the focus in bioinspired motile nanosystems has shifted from studying individual units to exploring and controlling collective behaviours. Various propulsion mechanisms including magnetic, electric or acoustic fields, as well as onboard chemical reactions, have enabled artificial micromotor and nanomotor (MNM) swarms that can move collectively as a response to environmental inputs. The controlled navigation and improved tissue penetration of MNM swarms is promising within the biomedical field, including in the active transport of medical agents. Despite these exciting advances, artificial MNMs still fall short of the complexity and autonomy seen in biological systems. This Perspective explores the collective behaviour of biological swarms and bioinspired artificial self-propelled nanosystems. We discuss how swarming intelligence applied to synthetic active nanosystems enables swarms to perform various tasks. Finally, we discuss challenges, including material limitations, information storage, communication between swarms and prospects for intelligent swarming systems.

JTD Keywords: Acoustic propulsion, Behavior, Chemical communication, Chemotaxis, Drive, Mechanisms, Nanorod motors, Ph taxis, Powered nanomotors, Supramolecular nanomotors


Lin, Jinwei, Guan, Qiaoxin, Feng, Jiangqi, Chen, Shuqin, Xu, Leilei, Guan, Jianguo, Sanchez, Samuel, (2025). Interactions Between Active Matters and Endogenous Fields Advanced Materials 37, e03091

Active matter, encompassing both natural and artificial systems, utilizes environmental energy to sustain autonomous motion, exhibiting unique non-equilibrium behaviors. Artificial active matter (AAM), such as nano/micromotors, holds transformative potential in precision medicine by enhancing drug delivery and enabling targeted therapeutic interventions. Under the demand for increasing intelligence in AAM, controlling their non-equilibrium processes within complex in vivo environments presents significant challenges. Endogenous fields-biological fields generated within living systems-play a pivotal role in guiding natural active matter's (NAM) directional migration and collective transformations, offering a strategy for in vivo control of non-equilibrium systems. Research in NAMs-inspired AAMs spans biology, chemistry, materials science, engineering, and physics, yet communication barriers among disciplines often impede progress. This review seeks to bridge these gaps by summarizing the key characteristics of chemical and physical endogenous fields in biological contexts such as tumors, wounds, and inflammation. It explores how natural and artificial active matter sense, transmit, and execute responses to these fields, and discusses how insights from natural systems can inform the design of synthetic counterparts. Potential issues and prospects of this research direction are also discussed. It is hoped that this review fosters interdisciplinary collaborations and propels the development of intelligent active matter for biomedical applications.

JTD Keywords: Acoustic propulsion, Active matter, Cell-migration, Collective behavior, Endogenous fields, Exhaled breath condensate, Extracellular ph, Hydrogen-peroxide, In-vivo, Interstitial fluid pressure, Nanomotors, Shear-wave elastography, Stimuli-responsive polymers, Tumor microenvironment