DONATE

Publications

by Keyword: Cell-migration

Cicconofri, Giancarlo, Blanco, Pau, Vilanova, Guillermo, Saez, Pablo, Arroyo, Marino, (2024). Active interfacial degradation/deposition of an elastic matrix by a fluid inclusion: Theory and pattern formation Journal Of The Mechanics And Physics Of Solids 191, 105773

During collective invasion in 3D, cohesive cellular tissues migrate within a fibrous extracellular matrix (ECM). This process requires significant remodeling of the ECM by cells, notably proteolysis at the cell-ECM interface by specialized molecules. Motivated by this problem, we develop a theoretical framework to study the dynamics of a fluid inclusion (modeling the cellular tissue) embedded in an elastic matrix (the ECM), which undergoes surface degradation/deposition. To account for the active nature of this process, we develop a continuum theory based on irreversible thermodynamics, leading to a kinetic relation for the degradation front that locally resembles the force-velocity relation of a molecular motor. We further study the effect of mechanotransduction on the stability of the cell-ECM interface, finding a variety of self- organized dynamical patterns of collective invasion. Our work identifies ECM proteolysis as an active process possibly driving the self-organization of cellular tissues.

JTD Keywords: Accretion, Accretion and erosion, Active matter, Cell-migration, Collective invasion, Growth, Insight, Irreversible thermodynamics, Mechanics, Model, Morphogenesis, Moving non-material interfaces, Pattern formatio, Proteolysis, Surface, Surface growth


Smith, CS, Alvarez, Z, Qiu, RM, Sasselli, IR, Clemons, T, Ortega, JA, Vilela-Picos, M, Wellman, H, Kiskinis, E, Stupp, SI, (2023). Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber Acs Nano 17, 19887-19902

Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.

JTD Keywords: axon growth, axon guidance, cell-migration, colorectal-cancer, dcc, dopaminergic-neurons, force-field, functional recovery, netrin-1, neurite outgrowth, neuronal maturation, neurotrophic factor, neurotrophicfactor mimetic, synapsis, Axon growth, Axons, Cells, cultured, Central nervous system, Coarse-grained model, Nanofibers, Netrin-1, Neurogenesis, Neuronal maturation, Neurons, Neurotrophic factor mimetic, Peptide amphiphile, Synapsis


Schamberger, B, Ziege, R, Anselme, K, Ben Amar, M, Bykowski, M, Castro, APG, Cipitria, A, Coles, RA, Dimova, R, Eder, M, Ehrig, S, Escudero, LM, Evans, ME, Fernandes, PR, Fratzl, P, Geris, L, Gierlinger, N, Hannezo, E, Iglic, A, Kirkensgaard, JJK, Kollmannsberger, P, Kowalewska, L, Kurniawan, NA, Papantoniou, I, Pieuchot, L, Pires, THV, Renner, LD, Sageman-Furnas, AO, Schroder-Turk, GE, Sengupta, A, Sharma, VR, Tagua, A, Tomba, C, Trepat, X, Waters, SL, Yeo, EF, Roschger, A, Bidan, CM, Dunlop, JWC, (2023). Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales Advanced Materials 35, 2206110

Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

JTD Keywords: biological systems, butterfly wing scales, cubic membranes, extracellular-matrix, geometry, mechanotransduction, membrane curvature, morphogenesis, neotissue growth, pattern-formation, soft materials, surface curvature, tissue-growth, Biological systems, Collective cell-migration, Surface curvature


Lolo, FN, Walani, N, Seemann, E, Zalvidea, D, Pavón, DM, Cojoc, G, Zamai, M, de Lesegno, CV, de Benito, FM, Sánchez-Alvarez, M, Uriarte, JJ, Echarri, A, Jiménez-Carretero, D, Escolano, JC, Sánchez, SA, Caiolfa, VR, Navajas, D, Trepat, X, Guck, J, Lamaze, C, Roca-Cusachs, P, Kessels, MM, Qualmann, B, Arroyo, M, Del Pozo, MA, (2023). Caveolin-1 dolines form a distinct and rapid caveolae-independent mechanoadaptation system Nature Cell Biology 25, 120-133

In response to different types and intensities of mechanical force, cells modulate their physical properties and adapt their plasma membrane (PM). Caveolae are PM nano-invaginations that contribute to mechanoadaptation, buffering tension changes. However, whether core caveolar proteins contribute to PM tension accommodation independently from the caveolar assembly is unknown. Here we provide experimental and computational evidence supporting that caveolin-1 confers deformability and mechanoprotection independently from caveolae, through modulation of PM curvature. Freeze-fracture electron microscopy reveals that caveolin-1 stabilizes non-caveolar invaginations-dolines-capable of responding to low-medium mechanical forces, impacting downstream mechanotransduction and conferring mechanoprotection to cells devoid of caveolae. Upon cavin-1/PTRF binding, doline size is restricted and membrane buffering is limited to relatively high forces, capable of flattening caveolae. Thus, caveolae and dolines constitute two distinct albeit complementary components of a buffering system that allows cells to adapt efficiently to a broad range of mechanical stimuli.© 2022. The Author(s).

JTD Keywords: cavin, cell-migration, cholesterol, extracellular-matrix, nanoscale organization, particle-size, polarization, size distribution, tension, Plasma-membrane


Clark, AG, Maitra, A, Jacques, C, Bergert, M, Perez-Gonzalez, C, Simon, A, Lederer, L, Diz-Munoz, A, Trepat, X, Voituriez, R, Vignjevic, DM, (2022). Self-generated gradients steer collective migration on viscoelastic collagen networks Nature Materials 21, 1200-1210

Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.; Cell clusters mechanically reorganize viscoelastic collagen networks, resulting in transient gradients in collagen density, alignment and stiffness that promote spontaneous persistent migration.

JTD Keywords: Cell-migration, Design, Invasion, Limits, Mechanics, Microscopy, Morphogenesis, Motility, Rear, Rigidity


Mesquida-Veny, F, Martinez-Torres, S, Del Rio, JA, Hervera, A, (2022). Nociception-Dependent CCL21 Induces Dorsal Root Ganglia Axonal Growth via CCR7-ERK Activation Frontiers In Immunology 13, 880647

While chemokines were originally described for their ability to induce cell migration, many studies show how these proteins also take part in many other cell functions, acting as adaptable messengers in the communication between a diversity of cell types. In the nervous system, chemokines participate both in physiological and pathological processes, and while their expression is often described on glial and immune cells, growing evidence describes the expression of chemokines and their receptors in neurons, highlighting their potential in auto- and paracrine signalling. In this study we analysed the role of nociception in the neuronal chemokinome, and in turn their role in axonal growth. We found that stimulating TRPV1(+) nociceptors induces a transient increase in CCL21. Interestingly we also found that CCL21 enhances neurite growth of large diameter proprioceptors in vitro. Consistent with this, we show that proprioceptors express the CCL21 receptor CCR7, and a CCR7 neutralizing antibody dose-dependently attenuates CCL21-induced neurite outgrowth. Mechanistically, we found that CCL21 binds locally to its receptor CCR7 at the growth cone, activating the downstream MEK-ERK pathway, that in turn activates N-WASP, triggering actin filament ramification in the growth cone, resulting in increased axonal growth.

JTD Keywords: axonal growth, ccl21, ccr7, mek-erk, Actin dynamics, Axonal growth, Ccl21, Ccr7, Cell-migration, Central-nervous-system, Chemokine, Ligands, Mek-erk, Microglia, Neurons, Neuropathic pain, Nociception, Phosphorylation, Regeneration


Comelles, J., Hortigüela, V., Samitier, J., Martinez, E., (2012). Versatile gradients of covalently bound proteins on microstructured substrates Langmuir 28, (38), 13688-13697

In this work, we propose an easy method to produce highly tunable gradients of covalently bound proteins on topographically modified poly(methyl methacrylate). We used a rnicrofluidic approach to obtain linear gradients with high slope (0.5 pmol.cm(-2).mm(-1)), relevant at the single-cell level. These protein gradients were characterized using fluorescence microscopy and surface plasmon resonance. Both experimental results and theoretical modeling on the protein gradients generated have proved them to be highly reproducible, stable up to 7 days, and easily tunable. This method enables formation of versatile cell culture platforms combining both complex biochemical and physical cues in an attempt to approach in vitro cell culture methods to in vivo cellular microenvironments.

JTD Keywords: Cell-migration, Microfluidic channel, Surface, Streptavidin, Molecules, Topography, Mechanisms, Generation, Responses, Guidance