DONATE

Publications

by Keyword: Active matter

Martinez, Anthony Jesus, Basharat, Majid, Chen, Shuqin, Sanchez, Samuel, Villa, Katherine, (2025). Flow-Active Liquid Marbles as Microreactors for Photocatalytic Micromotors Small 21, e05439--

Self-propelled micromotors have shown promise for applications in environmental remediation, sensing, and biomedicine. However, assessing their performance in realistic, 3D microenvironments with dynamic boundaries and complex topography remains a key challenge. Achieving controlled motion and enhanced reactivity under such confinement is critical for both technological applications and fundamental studies on active matter. Here, the integration of light-driven micromotors with liquid marbles is presented, which are gas-permeable droplets encased by hydrophobic particles that act as dynamic, flow-active microreactors. By tuning the coverage of the particulate shell, partially covered liquid marbles are developed that exhibit robust evaporation-induced flows, increasing the average micromotor velocity by approximately threefold compared to sessile droplets. Under illumination, photocatalytic self-propulsion provides an additional velocity component and promotes micromotor dispersion. The combined circulation enhances mass transfer, guiding micromotor accumulation and transport while providing an optical transparent, soft-confinement platform for studying active particles and confined catalytic reactions.

JTD Keywords: Active matter, Liquid marbles, Marangoni flow, Photocatalysis, Self-propelled micromotors


Lin, Jinwei, Guan, Qiaoxin, Feng, Jiangqi, Chen, Shuqin, Xu, Leilei, Guan, Jianguo, Sanchez, Samuel, (2025). Interactions Between Active Matters and Endogenous Fields Advanced Materials 37, e03091

Active matter, encompassing both natural and artificial systems, utilizes environmental energy to sustain autonomous motion, exhibiting unique non-equilibrium behaviors. Artificial active matter (AAM), such as nano/micromotors, holds transformative potential in precision medicine by enhancing drug delivery and enabling targeted therapeutic interventions. Under the demand for increasing intelligence in AAM, controlling their non-equilibrium processes within complex in vivo environments presents significant challenges. Endogenous fields-biological fields generated within living systems-play a pivotal role in guiding natural active matter's (NAM) directional migration and collective transformations, offering a strategy for in vivo control of non-equilibrium systems. Research in NAMs-inspired AAMs spans biology, chemistry, materials science, engineering, and physics, yet communication barriers among disciplines often impede progress. This review seeks to bridge these gaps by summarizing the key characteristics of chemical and physical endogenous fields in biological contexts such as tumors, wounds, and inflammation. It explores how natural and artificial active matter sense, transmit, and execute responses to these fields, and discusses how insights from natural systems can inform the design of synthetic counterparts. Potential issues and prospects of this research direction are also discussed. It is hoped that this review fosters interdisciplinary collaborations and propels the development of intelligent active matter for biomedical applications.

JTD Keywords: Acoustic propulsion, Active matter, Cell-migration, Collective behavior, Endogenous fields, Exhaled breath condensate, Extracellular ph, Hydrogen-peroxide, In-vivo, Interstitial fluid pressure, Nanomotors, Shear-wave elastography, Stimuli-responsive polymers, Tumor microenvironment


Cicconofri, G, Blanco, P, Vilanova, G, Sáez, P, Arroyo, M, (2024). Active interfacial degradation/deposition of an elastic matrix by a fluid inclusion: Theory and pattern formation Journal Of The Mechanics And Physics Of Solids 191, 105773

During collective invasion in 3D, cohesive cellular tissues migrate within a fibrous extracellular matrix (ECM). This process requires significant remodeling of the ECM by cells, notably proteolysis at the cell-ECM interface by specialized molecules. Motivated by this problem, we develop a theoretical framework to study the dynamics of a fluid inclusion (modeling the cellular tissue) embedded in an elastic matrix (the ECM), which undergoes surface degradation/deposition. To account for the active nature of this process, we develop a continuum theory based on irreversible thermodynamics, leading to a kinetic relation for the degradation front that locally resembles the force-velocity relation of a molecular motor. We further study the effect of mechanotransduction on the stability of the cell-ECM interface, finding a variety of self- organized dynamical patterns of collective invasion. Our work identifies ECM proteolysis as an active process possibly driving the self-organization of cellular tissues.

JTD Keywords: Accretion, Accretion and erosion, Active matter, Cell-migration, Collective invasion, Growth, Insight, Irreversible thermodynamics, Mechanics, Model, Morphogenesis, Moving non-material interfaces, Pattern formatio, Proteolysis, Surface, Surface growth


Vélez-Cerón, I, Guillamat, P, Sagués, F, Ignés-Mullol, J, (2024). Probing active nematics with in situ microfabricated elastic inclusions Proceedings Of The National Academy Of Sciences Of The United States Of America 121, e2312494121

In this work, we report a direct measurement of the forces exerted by a tubulin/kinesin active nematic gel as well as its complete rheological characterization, including the quantification of its shear viscosity, lb and its activity parameter, a. For this, we develop a method that allows us to rapidly photo -polymerize compliant elastic inclusions in the continuously remodeling active system. Moreover, we quantitatively settle longstanding theoretical predictions, such as a postulated relationship encoding the intrinsic time scale of the active nematic in terms of n and a. In parallel, we infer a value for the nematic elasticity constant, K, by combining our measurements with the theorized scaling of the active length scale. On top of the microrheology capabilities, we demonstrate strategies for defect encapsulation, quantification of defect mechanics, and defect interactions, enabled by the versatility of the microfabrication strategy that allows to combine elastic motifs of different shapes and stiffnesses that are fabricated in situ.

JTD Keywords: Dynamics, Hydrogel, Micro fabricatio, Micro fabrication, Motio, Rheology, Soft active matter, Topological defects


Angelini, Thomas E., Hannezo, Edouard, Trepat, Xavier, Marquez, Manuel, Fredberg, Jeffrey J., Weitz, David A., (2011). Glass-like dynamics of collective cell migration Proceedings of the National Academy of Sciences of the United States of America 108, (12), 4714-4719

Collective cell migration in tissues occurs throughout embryonic development, during wound healing, and in cancerous tumor invasion, yet most detailed knowledge of cell migration comes from single-cell studies. As single cells migrate, the shape of the cell body fluctuates dramatically through cyclic processes of extension, adhesion, and retraction, accompanied by erratic changes in migration direction. Within confluent cell layers, such subcellular motions must be coupled between neighbors, yet the influence of these subcellular motions on collective migration is not known. Here we study motion within a confluent epithelial cell sheet, simultaneously measuring collective migration and subcellular motions, covering a broad range of length scales, time scales, and cell densities. At large length scales and time scales collective migration slows as cell density rises, yet the fastest cells move in large, multicell groups whose scale grows with increasing cell density. This behavior has an intriguing analogy to dynamic heterogeneities found in particulate systems as they become more crowded and approach a glass transition. In addition we find a diminishing self-diffusivity of short-wavelength motions within the cell layer, and growing peaks in the vibrational density of states associated with cooperative cell-shape fluctuations. Both of these observations are also intriguingly reminiscent of a glass transition. Thus, these results provide a broad and suggestive analogy between cell motion within a confluent layer and the dynamics of supercooled colloidal and molecular fluids approaching a glass transition.

JTD Keywords: Active matter, Cell mechanics, Jamming, Collective cell dynamics, Nonequilibrium