DONATE

Publications

by Keyword: Bacterial infections

Ruiz-Gonzalez, Noelia, Sanchez-deAlcazar, Daniel, Esporrin-Ubieto, David, Di Carlo, Valerio, Sanchez, Samuel, (2025). Hyaluronic Acid-Based Nanomotors: Crossing Mucosal Barriers to Tackle Antimicrobial Resistance Acs Applied Materials & Interfaces 17, 27988-27999

Bacterial infections pose a significant global health challenge aggravated by the rise of antimicrobial resistance (AMR). Among the obstacles preventing effective treatment are biological barriers (BBs) within the body such as the mucus layer. These BBs trap antimicrobials, necessitating higher doses and ultimately accelerating AMR. Addressing this issue requires innovative therapeutic strategies capable of bypassing BBs to deliver drugs more effectively. Here, we present nanomotors (NMs) based on hyaluronic acid (HA)- and urease-nanogels (NGs) as a solution to navigate effectively in viscous media by catalyzing the decomposition of urea into ammonium and carbon dioxide. These HA-based nanomotors (HA-NMs) were loaded with chloramphenicol (CHL) antibiotic and demonstrated superior antimicrobial activity against Escherichia coli(E. coli) compared to mesoporous silica NMs (MSNP-NMs), a reference in the field of NMs. Moreover, using an in vitro transwell model we evaluated the ability of HA-NMs to penetrate mucin barriers, effectively reducing E. coli proliferation, whereas the free antibiotic did not reduce bacteria proliferation. The optical density reduction at 24 h was over ten times greater than with free CHL. These organic-based enzyme-powered NMs represent a significant advancement in drug delivery, offering a promising approach to combat AMR while addressing the challenges of crossing complex BBs.

JTD Keywords: Bacterial infections, Biologicalbarriers, Design, Drug deliver, Enzyme, Mucu, Nanogels, Nanomotors, Nanoparticles


Castrejón-Comas, V, Alemán, C, Pérez-Madrigal, MM, (2023). Multifunctional conductive hyaluronic acid hydrogels for wound care and skin regeneration Biomaterials Science 11, 2266-2276

Conductive and interactive hydrogels based on hyaluronic acid are engineered as wound dressings that enhance skin tissue regeneration either through electrical stimulation or by displaying multifunctional performance and, ultimately, interactivity.

JTD Keywords: antibacterial, fields, Anti-bacterial agents, Bacterial infections, Humans, Hyaluronic acid, Hydrogels, Injectable hydrogels, Skin, Wound healing


Resina, L, El Hauadi, K, Sans, J, Esteves, T, Ferreira, FC, Perez-Madrigal, MM, Aleman, C, (2023). Electroresponsive and pH-Sensitive Hydrogel as Carrier for Controlled Chloramphenicol Release Biomacromolecules 24, 1432-1444

Multiresponsive hydrogels, which are smart soft materials that respond to more than one external stimulus, have emerged as powerful tools for biomedical applications, such as drug delivery. Within this context and with the aim of eliminating the systematic administration of antibiotics, special attention is being paid to the development of systems for controlled delivery of antibiotic for topical treatment of bacterial infections. In this work, an electro-chemo responsive hydrogel able to release chloramphenicol (CAM), a broad spectrum antibiotic also used for anticancer therapy, is proposed. This has been prepared by grafting poly(acrylic acid) (PAA) to sodium alginate (Alg) and in situ encapsulation of poly(3,4-ethylenedioxythiophene) nanoparticles loaded with CAM (PEDOT/CAM NPs), which were obtained by emulsion polymerization. Although the response to electrical stimuli of PEDOT was the main control for the release of CAM from PEDOT/CAM NPs, the release by passive diffusion had a relatively important contribution. Conversely, the passive release of antibiotic from the whole engineered hydrogel system, Alg-g-PAA/PEDOT/CAM, was negligible, whereas significant release was achieved under electrostimulation in an acid environment. Bacterial tests and assays with cancer cells demonstrated that the biological activity of CAM remained after release by electrical stimulation. Notably, the successful dual-response of the developed hydrogel to electrical stimuli and pH changes evidence the great prospect of this smart material in the biomedical field, as a tool to fight against bacterial infections and to provide local cancer treatment.

JTD Keywords: drug-delivery, films, growth, nanoparticles, Anti-bacterial agents, Bacterial infections, Cancer stem-cells, Chloramphenicol, Humans, Hydrogels, Hydrogen-ion concentration


Escartín, A, El Hauadi, K, Lanzalaco, S, Perez-Madrigal, MM, Armelin, E, Turon, P, Alemán, C, (2023). Preparation and Characterization of Functionalized Surgical Meshes for Early Detection of Bacterial Infections Acs Biomaterials Science & Engineering 9, 1104-1115

Isotactic polypropylene (i-PP) nonabsorbable surgical meshes are modified by incorporating a conducting polymer (CP) layer to detect the adhesion and growth of bacteria by sensing the oxidation of nicotinamide adenine dinucleotide (NADH), a metabolite produced by the respiration reactions of such microorganisms, to NAD+. A three-step process is used for such incorporation: (1) treat pristine meshes with low-pressure O2 plasma; (2) functionalize the surface with CP nanoparticles; and (3) coat with a homogeneous layer of electropolymerized CP using the nanoparticles introduced in (2) as polymerization nuclei. The modified meshes are stable and easy to handle and also show good electrochemical response. The detection by cyclic voltammetry of NADH within the interval of concentrations reported for bacterial cultures is demonstrated for the two modified meshes. Furthermore, Staphylococcus aureus and both biofilm-positive (B+) and biofilm-negative (B-) Escherichia coli cultures are used to prove real-time monitoring of NADH coming from aerobic respiration reactions. The proposed strategy, which offers a simple and innovative process for incorporating a sensor for the electrochemical detection of bacteria metabolism to currently existing surgical meshes, holds considerable promise for the future development of a new generation of smart biomedical devices to fight against post-operative bacterial infections.

JTD Keywords: adhesion, bacteria metabolism, behavior, biocompatibility, conducting polymer, electrochemical sensor, hernia repair, in-vivo, liquid, nadh detection, plasma treatment, prevention, reinforcement, sensor, smart meshes, Bacteria metabolism, Bacterial infections, Conducting polymer, Electrochemical sensor, Humans, Nad, Nadh detection, Nanoparticles, Oxidation-reduction, Plasma treatment, Polymers, Polypropylene mesh, Smart meshes, Surgical mesh