by Keyword: Bone tissue

Barbosa F, Garrudo FFF, Alberte PS, Resina L, Carvalho MS, Jain A, Marques AC, Estrany F, Rawson FJ, Aléman C, Ferreira FC, Silva JC, (2023). Hydroxyapatite-filled osteoinductive and piezoelectric nanofibers for bone tissue engineering Science And Technology Of Advanced Materials 24, 2242242

Osteoporotic-related fractures are among the leading causes of chronic disease morbidity in Europe and in the US. While a significant percentage of fractures can be repaired naturally, in delayed-union and non-union fractures surgical intervention is necessary for proper bone regeneration. Given the current lack of optimized clinical techniques to adequately address this issue, bone tissue engineering (BTE) strategies focusing on the development of scaffolds for temporarily replacing damaged bone and supporting its regeneration process have been gaining interest. The piezoelectric properties of bone, which have an important role in tissue homeostasis and regeneration, have been frequently neglected in the design of BTE scaffolds. Therefore, in this study, we developed novel hydroxyapatite (HAp)-filled osteoinductive and piezoelectric poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TrFE) nanofibers via electrospinning capable of replicating the tissue's fibrous extracellular matrix (ECM) composition and native piezoelectric properties. The developed PVDF-TrFE/HAp nanofibers had biomimetic collagen fibril-like diameters, as well as enhanced piezoelectric and surface properties, which translated into a better capacity to assist the mineralization process and cell proliferation. The biological cues provided by the HAp nanoparticles enhanced the osteogenic differentiation of seeded human mesenchymal stem/stromal cells (MSCs) as observed by the increased ALP activity, cell-secreted calcium deposition and osteogenic gene expression levels observed for the HAp-containing fibers. Overall, our findings describe the potential of combining PVDF-TrFE and HAp for developing electroactive and osteoinductive nanofibers capable of supporting bone tissue regeneration.© 2023 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.

JTD Keywords: Bone tissue engineering, Electrospinning, Hydroxyapatite, Piezoelectricity, Pvdf-trfe

Elyaderani AK, De Lama-Odría MDC, Valle LJD, Puiggalí J, (2022). Multifunctional Scaffolds Based on Emulsion and Coaxial Electrospinning Incorporation of Hydroxyapatite for Bone Tissue Regeneration International Journal Of Molecular Sciences 23, 15016

Tissue engineering is nowadays a powerful tool to restore damaged tissues and recover their normal functionality. Advantages over other current methods are well established, although a continuous evolution is still necessary to improve the final performance and the range of applications. Trends are nowadays focused on the development of multifunctional scaffolds with hierarchical structures and the capability to render a sustained delivery of bioactive molecules under an appropriate stimulus. Nanocomposites incorporating hydroxyapatite nanoparticles (HAp NPs) have a predominant role in bone tissue regeneration due to their high capacity to enhance osteoinduction, osteoconduction, and osteointegration, as well as their encapsulation efficiency and protection capability of bioactive agents. Selection of appropriated polymeric matrices is fundamental and consequently great efforts have been invested to increase the range of properties of available materials through copolymerization, blending, or combining structures constituted by different materials. Scaffolds can be obtained from different processes that differ in characteristics, such as texture or porosity. Probably, electrospinning has the greater relevance, since the obtained nanofiber membranes have a great similarity with the extracellular matrix and, in addition, they can easily incorporate functional and bioactive compounds. Coaxial and emulsion electrospinning processes appear ideal to generate complex systems able to incorporate highly different agents. The present review is mainly focused on the recent works performed with Hap-loaded scaffolds having at least one structural layer composed of core/shell nanofibers.

JTD Keywords: bone tissue, coaxial electrospinning, composite nanofibers, drug-release behavior, emulsion electrospinning, hydroxyapatite, in-vitro evaluation, mechanical-properties, osteogenic differentiation, pickering emulsions, protein adsorption, structured scaffolds, surface-initiated polymerization, tissue regeneration, Bone tissue, Coaxial electrospinning, Emulsion electrospinning, Hydroxyapatite, Multifunctional scaffolds, Poly(3-hydroxybutyrate) phb patches, Tissue regeneration

Raymond, Yago, Johansson, Linh, Thorel, Emilie, Ginebra, Maria-Pau, (2022). Translation of three-dimensional printing of ceramics in bone tissue engineering and drug delivery Mrs Bulletin 47, 59-69

Sánchez-Ferrero, Aitor, Mata, Álvaro, Mateos-Timoneda, Miguel A., Rodríguez-Cabello, José C., Alonso, Matilde, Planell, Josep, Engel, Elisabeth, (2015). Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration Biomaterials 68, 42-53

Bone tissue engineering demands alternatives overcoming the limitations of traditional approaches in the context of a constantly aging global population. In the present study, elastin-like recombinamers hydrogels were produced by means of carbodiimide-catalyzed crosslinking with citric acid, a molecule suggested to be essential for bone nanostructure. By systematically studying the effect of the relative abundance of reactive species on gelation and hydrogel properties such as functional groups content, degradation and structure, we were able to understand and to control the crosslinking reaction to achieve hydrogels mimicking the fibrillary nature of the extracellular matrix. By studying the effect of polymer concentration on scaffold mechanical properties, we were able to produce hydrogels with a stiffness value of 36.13 ± 10.72 kPa, previously suggested to be osteoinductive. Microstructured and mechanically-tailored hydrogels supported the growth of human mesenchymal stem cells and led to higher osteopontin expression in comparison to their non-tailored counterparts. Additionally, tailored hydrogels were able to rapidly self-mineralize in biomimetic conditions, evidencing that citric acid was successfully used both as a crosslinker and a bioactive molecule providing polymers with calcium phosphate nucleation capacity.

JTD Keywords: Biomimetic material, Biomineralisation, Bone tissue engineering, Cross-linking, Hydrogel, Mesenchymal stem cell

Won, J. E., Mateos-Timoneda, M. A., Castaño, O., Planell, J. A., Seo, S. J., Lee, E. J., Han, C. M., Kim, H. W., (2015). Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering Biotechnology Letters , 37, (4), 935-342

Bioactive nanocomposite scaffolds with cell-adhesive surface have excellent bone regeneration capacities. Fibronectin (FN)-immobilized nanobioactive glass (nBG)/polycaprolactone (PCL) (FN-nBG/PCL) scaffolds with an open pore architecture were generated by a robotic-dispensing technique. The surface immobilization level of FN was significantly higher on the nBG/PCL scaffolds than on the PCL scaffolds, mainly due to the incorporated nBG that provided hydrophilic chemical-linking sites. FN-nBG/PCL scaffolds significantly improved cell responses, including initial anchorage and subsequent cell proliferation. Although further in-depth studies on cell differentiation and the in vivo animal responses are required, bioactive nanocomposite scaffolds with cell-favoring surface are considered to provide promising three-dimensional substrate for bone regeneration.

JTD Keywords: Bone scaffolds, Cell response, Fibronectin, Nanobioactive glass, Nanocomposites, Polycaprolactone, Bone, Cell proliferation, Cells, Cytology, Glass, Nanocomposites, Polycaprolactone, Robotics, Bone scaffolds, Bone tissue engineering, Cell response, Fibronectin, Fibronectin immobilizations, Nano bioactive glass, Nanocomposite scaffolds, Three-dimensional substrates, Scaffolds (biology)

Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., Castaño, O., (2014). Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering Materials Science and Engineering: C 44, 183-190

In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold.

JTD Keywords: Bilayer fibrous scaffold, Ceramic nanoparticles, Electrospinning, Gelatin, Polycaprolactone, Biomechanics, Bone, Calcium phosphate, Cell culture, Electrospinning, Fourier transform infrared spectroscopy, Mechanical properties, Mineralogy, Nanoparticles, Phosphatases, Polycaprolactone, Scanning electron microscopy, X ray diffraction, Polycaprolactone, Alkaline phosphatase activity, Bone tissue engineering, Calcium phosphate nanoparticles, Ceramic nanoparticles, Fibrous scaffolds, Gelatin, Simulated body fluids, Wide-angle x-ray diffraction, Electrospuns, Scaffolds (biology), Electrospinning

Pérez-Amodio, Soledad, Engel, Elisabeth, (2014). Bone biology and Regeneration Bio-Ceramics with Clinical Applications (ed. Vallet-Regí, M.), John Wiley & Sons, Ltd (Chichester, UK) , 315-342

Each bone of the skeleton constantly undergoes modeling during life to help it to adapt to changing biomechanical forces as well as remodeling to remove old bone and replace it with new, mechanically stronger bone to help preserve bone strength. Bone remodeling involves the removal of mineralized bone by osteoclasts, followed by the formation of bone matrix through the osteoblasts that subsequently become mineralized. All these assets make bone a suitable model for regeneration. Bone tissue can be grossly divided into inorganic mineral material (mostly HA), and organic material from cells and the extracellular matrix. This chapter outlines some of the bone diseases such as osteoporosis and Paget's disease. Bone can be considered as a biphasic composite material, with two phases: one the mineral and the other collagen. This combination confers better mechanical properties on the tissue than each component itself.

JTD Keywords: Bone biology, Bone cells, Bone diseases, Bone extracellular matrix, Bone mechanics, Bone remodeling, Bone tissue regeneration, Skeleton

Perut, F., Montufar, E. B., Ciapetti, G., Santin, M., Salvage, J., Traykova, T., Planell, J. A., Ginebra, M. P., Baldini, N., (2011). Novel soybean/gelatine-based bioactive and injectable hydroxyapatite foam: Material properties and cell response Acta Biomaterialia 7, (4), 1780-1787

Despite their known osteoconductivity, clinical use of calcium phosphate cements is limited both by their relatively slow rate of resorption and by rheological properties incompatible with injectability. Bone in-growth and material resorption have been improved by the development of porous calcium phosphate cements. However, injectable formulations have so far only been obtained through the addition of relatively toxic surfactants. The present work describes the response of osteoblasts to a novel injectable foamed bone cement based on a composite formulation including the bioactive foaming agents soybean and gelatine. The foaming properties of both defatted soybean and gelatine gels were exploited to develop a self-hardening soy/gelatine/hydroxyapatite composite foam able to retain porosity upon injection. After setting, the foamed paste produced a calcium-deficient hydroxyapatite scaffold, showing good injectability and cohesion as well as interconnected porosity after injection. The intrinsic bioactivity of soybean and gelatine was shown to favour osteoblast adhesion and growth. These findings suggest that injectable, porous and bioactive calcium phosphate cements can be produced for bone regeneration through minimally invasive surgery.

JTD Keywords: Calcium phosphate cement, Composite, Bone tissue engineering, Cell viability, Bioactivity

Milan, J. L., Planell, J. A., Lacroix, D., (2010). Simulation of bone tissue formation within a porous scaffold under dynamic compression Biomechanics and Modeling in Mechanobiology 9, (5), 583-596

A computational model of mechanoregulation is proposed to predict bone tissue formation stimulated mechanically by overall dynamical compression within a porous polymeric scaffold rendered by micro-CT. Dynamic compressions of 0.5-5% at 0.0025-0.025 s(-1) were simulated. A force-controlled dynamic compression was also performed by imposing a ramp of force from 1 to 70 N. The model predicts homogeneous mature bone tissue formation under strain levels of 0.5-1% at strain rates of 0.0025-0.005 s(-1). Under higher levels of strain and strain rates, the scaffold shows heterogeneous mechanical behaviour which leads to the formation of a heterogeneous tissue with a mixture of mature bone and fibrous tissue. A fibrous tissue layer was also predicted under the force-controlled dynamic compression, although the same force magnitude was found promoting only mature bone during a strain-controlled compression. The model shows that the mechanical stimulation of bone tissue formation within a porous scaffold closely depends on the loading history and on the mechanical behaviour of the scaffold at local and global scales.

JTD Keywords: Bone tissue engineering, Scaffold, Tissue differentiation, Mechanoregulation, Finite element analysis

Koch, M. A., Vrij, E. J., Engel, E., Planell, J. A., Lacroix, D., (2010). Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters Journal of Biomedical Materials Research - Part A , 95A, (4), 1011-1018

A promising approach to bone tissue engineering lies in the use of perfusion bioreactors where cells are seeded and cultured on scaffolds under conditions of enhanced nutrient supply and removal of metabolic products. Fluid flow alterations can stimulate cell activity, making the engineering of tissue more efficient. Most bioreactor systems are used to culture cells on thin scaffold discs. In clinical use, however, bone substitutes of large dimensions are needed. In this study, MG63 osteoblast-like cells were seeded on large porous PLA/glass scaffolds with a custom developed perfusion bioreactor system. Cells were seeded by oscillating perfusion of cell suspension through the scaffolds. Applicable perfusion parameters for successful cell seeding were determined by varying fluid flow velocity and perfusion cycle number. After perfusion, cell seeding, the cell distribution, and cell seeding efficiency were determined. A fluid flow velocity of 5 mm/s had to be exceeded to achieve a uniform cell distribution throughout the scaffold interior. Cell seeding efficiencies of up to 50% were achieved. Results suggested that perfusion cycle number influenced cell seeding efficiency rather than fluid flow velocities. The cell seeding conducted is a promising basis for further long term cell culture studies in large porous scaffolds.

JTD Keywords: Bioreactor, Bone tissue engineering, Scaffolds, In vitro

Jang, J. H., Castano, O., Kim, H. W., (2009). Electrospun materials as potential platforms for bone tissue engineering Advanced Drug Delivery Reviews 61, (12), 1065-1083

Nanofibrous materials produced by electrospinning processes have attracted considerable interest in tissue regeneration, including bone reconstruction. A range of novel materials and processing tools have been developed to mimic the native bone extracellular matrix for potential applications as tissue engineering scaffolds and ultimately to restore degenerated functions of the bone. Degradable polymers, bioactive inorganics and their nanocomposites/hybrids nanofibers with suitable mechanical properties and bone bioactivity for osteoblasts and progenitor/stem cells have been produced. The surface functionalization with apatite minerals and proteins/peptides as well as drug encapsulation within the nanofibers is a promising strategy for achieving therapeutic functions with nanofibrous materials. Recent attempts to endow a 3D scaffolding technique to the electrospinning regime have shown some promise for engineering 3D tissue constructs. With the improvement in knowledge and techniques of bone-targeted nanofibrous matrices, bone tissue engineering is expected to be realized in the near future.

JTD Keywords: Electrospun nanofiber, Bone tissue engineering, Biomimetic matrix, Bone bioactivity, 3D scaffolding

Milan, J. L., Planell, J. A., Lacroix, D., (2009). Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold Biomaterials 30, (25), 4219-4226

A computational model based on finite element method (FEM) and computational fluid dynamics (CFD) is developed to analyse the mechanical stimuli in a composite scaffold made of polylactic acid (PLA) matrix with calcium phosphate glass (Glass) particles. Different bioreactor loading conditions were simulated within the scaffold. In vitro perfusion conditions were reproduced in the model. Dynamic compression was also reproduced in an uncoupled fluid-structure scheme: deformation level was studied analyzing the mechanical response of scaffold alone under static compression while strain rate was studied considering the fluid flow induced by compression through fixed scaffold. Results of the model show that during perfusion test an inlet velocity of 25mum/s generates on scaffold surface a fluid flow shear stress which may stimulate osteogenesis. Dynamic compression of 5% applied on the PLA-Glass scaffold with a strain rate of 0.005s(-1) has the benefit to generate mechanical stimuli based on both solid shear strain and fluid flow shear stress on large scaffold surface area. Values of perfusion inlet velocity or compression strain rate one order of magnitude lower may promote cell proliferation while values one order of magnitude higher may be detrimental for cells. FEM-CFD scaffold models may help to determine loading conditions promoting bone formation and to interpret experimental results from a mechanical point of view.

JTD Keywords: Bone tissue engineering, Scaffold, Finite element analysis, Computational fluid dynamics, Mechanical stimuli

Sandino, C., Planell, J. A., Lacroix, D., (2008). A finite element study of mechanical stimuli in scaffolds for bone tissue engineering Journal of Biomechanics 41, (5), 1005-1014

Mechanical stimuli are one of the factors that affect cell proliferation and differentiation in the process of bone tissue regeneration. Knowledge on the specific deformation sensed by cells at a microscopic level when mechanical loads are applied is still missing in the development of biomaterials for bone tissue engineering. The objective of this study was to analyze the behavior of the mechanical stimuli within some calcium phosphate-based scaffolds in terms of stress and strain distributions in the solid material phase and fluid velocity, fluid pressure and fluid shear stress distributions in the pores filled of fluid, by means of micro computed tomographed (CT)-based finite element (FE) models. Two samples of porous materials, one of calcium phosphate-based cement and another of biodegradable glass, were used. Compressive loads equivalent to 0.5% of compression applied to the solid material phase and interstitial fluid flows with inlet velocities of 1, 10 and 100 mu m/s applied to the interconnected pores were simulated, changing also the inlet side and the viscosity of the medium. Similar strain distributions for both materials were found, with compressive and tensile strain maximal values of 1.6% and 0.6%, respectively. Mean values were consistent with the applied deformation. When 10 mu m/s of inlet fluid velocity and 1.45 Pa s viscosity, maximal values of fluid velocity were 12.76 mm/s for CaP cement and 14.87 mm/s for glass. Mean values were consistent with the inlet ones applied, and mean values of shear stress were around 5 x 10(-5) Pa. Variations on inlet fluid velocity and fluid viscosity produce proportional and independent changes in fluid velocity, fluid shear stress and fluid pressure. This study has shown how mechanical loads and fluid flow applied on the scaffolds cause different levels of mechanical stimuli within the samples according to the morphology of the materials.

JTD Keywords: Bone tissue engineering, Finite element analysis, Scaffolds, Mechanical stimuli