DONATE

Publications

by Keyword: Ceramics

Arnau M, Sans J, Gallego E, Perales JF, Turon P, Alemán C, (2024). Polarized hydroxyapatite, a ceramic nanocatalyst to convert automotive carbon emissions into ethanol Journal Of Environmental Chemical Engineering 12, 112255

This paper is aimed to develop ultrananoporous polarized hydroxyapatite (HAp) catalyst and evaluate its performance in transforming CO2 into useable ethanol considering three different scenarios: 1) a batch reaction using a mixture of CO2 and CH4 as feeding gas; 2) a batch reaction using as reactant exhaust gases captured from the fumes of diesel vehicles; and 3) a continuous flow reaction using pure CO2 as feeding gas. Ultrananoporous HAp scaffolds were prepared using a four-step process: 1) as prepared HAp powder was mixed with 60% wt. of a commercial hydrogel at low-temperature; 2) the resulting paste was shaped at low temperature to reduce the adhesion between the metallic tools and the mixture, enhancing the homogeneity of the sample; 3) the shaped paste was calcined in air by applying 1000 ºC during 2 h to eliminate the hydrogel; and 4) an external DC electric field of 3 kV/cm was imposed at 1000 ºC during 1 h to the calcined scaffold. The resulting polarized scaffolds both ultrananoporosity and catalytic activation. Thus, the mass: volume ratio of the ultrananoporous catalyst was much lower than that of conventional HAp catalyst (718 vs 5093 g/L. Furthermore, the ethanol yield was much higher (up to a factor of ×21.4) for the ultrananoporous catalyst than for the compact one, allowing us to conclude that ultrananoporous polarized HAp catalyst is a promising technology for transforming CO2 into valuable chemical products from highly polluted gases, especially those coming from road, sea and air transport. © 2024 Elsevier Ltd

JTD Keywords: A: ceramics, Air pollution, Automotives, Batch reactions, Calcination, Carbon, Carbon dioxide, Co2 fixation, Electric fields, Environmental process, Ethanol, Exhaust gases, Feeding gas, Fumes, Hydrogels, Hydroxyapatite, Lows-temperatures, Nano-catalyst, Nanocatalysts, Polarized catalyst, Scaffolds, Temperature, ]+ catalyst


del-Mazo-Barbara L, Johansson L, Tampieri F, Ginebra M-P, (2024). Toughening 3D printed biomimetic hydroxyapatite scaffolds: Polycaprolactone-based self-hardening inks Acta Biomaterialia 177, 506-524

The application of 3D printing to calcium phosphates has opened unprecedented possibilities for the fabrication of personalized bone grafts. However, their biocompatibility and bioactivity are counterbalanced by their high brittleness. In this work we aim at overcoming this problem by developing a self-hardening ink containing reactive ceramic particles in a polycaprolactone solution instead of the traditional approach that use hydrogels as binders. The presence of polycaprolactone preserved the printability of the ink and was compatible with the hydrolysis-based hardening process, despite the absence of water in the ink and its hydrophobicity. The microstructure evolved from a continuous polymeric phase with loose ceramic particles to a continuous network of hydroxyapatite nanocrystals intertwined with the polymer, in a configuration radically different from the polymer/ceramic composites obtained by fused deposition modelling. This resulted in the evolution from a ductile behavior, dominated by the polymer, to a stiffer behavior as the ceramic phase reacted. The polycaprolactone binder provides two highly relevant benefits compared to hydrogel-based inks. First, the handleability and elasticity of the as-printed scaffolds, together with the proven possibility of eliminating the solvent, opens the door to implanting the scaffolds freshly printed once lyophilized, while in a ductile state, and the hardening process to take place inside the body, as in the case of calcium phosphate cements. Second, even with a hydroxyapatite content of more than 92 wt.%, the flexural strength and toughness of the scaffolds after hardening are twice and five times those of the all-ceramic scaffolds obtained with the hydrogel-based inks, respectively. Statement of significance: Overcoming the brittleness of ceramic scaffolds would extend the applicability of synthetic bone grafts to high load-bearing situations. In this work we developed a 3D printing ink by replacing the conventional hydrogel binder with a water-free polycaprolactone solution. The presence of polycaprolactone not only enhanced significantly the strength and toughness of the scaffolds while keeping the proportion of bioactive ceramic phase larger than 90 wt.%, but it also conferred flexibility and manipulability to the as-printed scaffolds. Since they are able to harden upon contact with water under physiological conditions, this opens up the possibility of implanting them immediately after printing, while they are still in a ductile state, with clear advantages for fixation and press-fit in the bone defect. © 2024 The Authors

JTD Keywords: 3-d printing, 3d printing, 3d-printing, Binders, Biocompatibility, Biomimetic hydroxyapatites, Biomimetics, Bone cement, Bone scaffolds, Brittleness, Calcium phosphate, Ceramic phase, Ceramic scaffolds, Ceramics particles, Fracture mechanics, Hardening, Hardening process, Hydrogels, Hydroxyapatite, Mechanical properties, Plasticity, Polycaprolactone, Scaffolds, Scaffolds (biology), Self hardening, Strength and toughness


Humbert P, Kampleitner C, De Lima J, Brennan MÁ, Lodoso-Torrecilla I, Sadowska JM, Blanchard F, Canal C, Ginebra MP, Hoffmann O, Layrolle P, (2024). Phase composition of calcium phosphate materials affects bone formation by modulating osteoclastogenesis Acta Biomaterialia 176, 417-431

Human mesenchymal stromal cells (hMSCs) seeded on calcium phosphate (CaP) bioceramics are extensively explored in bone tissue engineering and have recently shown effective clinical outcomes. In previous pre-clinical studies, hMSCs-CaP-mediated bone formation was preceded by osteoclastogenesis at the implantation site. The current study evaluates to what extent phase composition of CaPs affects the osteoclast response and ultimately influence bone formation. To this end, four different CaP bioceramics were used, hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and two biphasic composites of HA/β-TCP ratios of 60/40 and 20/80 respectively, for in vitro osteoclast differentiation and correlation with in vivo osteoclastogenesis and bone formation. All ceramics allowed osteoclast formation in vitro from mouse and human precursors, except for pure HA, which significantly impaired their maturation. Ectopic implantation alongside hMSCs in subcutis sites of nude mice revealed new bone formation at 8 weeks in all conditions with relative amounts for β-TCP > biphasic CaPs > HA. Surprisingly, while hMSCs were essential for osteoinduction, their survival did not correlate with bone formation. By contrast, the degree of early osteoclastogenesis (2 weeks) seemed to define the extent of subsequent bone formation. Together, our findings suggest that the osteoclastic response could be used as a predictive marker in hMSC-CaP-based bone regeneration and strengthens the need to understand the underlying mechanisms for future biomaterial development. STATEMENT OF SIGNIFICANCE: The combination of mesenchymal stromal cells (MSCs) and calcium phosphate (CaP) materials has demonstrated its safety and efficacy for bone regeneration in clinical trials, despite our insufficient understanding of the underlying biological mechanisms. Osteoclasts were previously suggested as key mediators between the early inflammatory phase following biomaterial implantation and the subsequent bone formation. Here we compared the affinity of osteoclasts for various CaP materials with different ratios of hydroxyapatite to β-tricalcium phosphate. We found that osteoclast formation, both in vitro and at early stages in vivo, correlates with bone formation when the materials were implanted alongside MSCs in mice. Surprisingly, MSC survival did not correlate with bone formation, suggesting that the number or phenotype of osteoclasts formed was more important.Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.

JTD Keywords: Acid phosphatase tartrate resistant isoenzyme, Animal, Animal cell, Animal experiment, Animal tissue, Animals, Article, Beta-tricalcium phosphate, Bioceramics, Biocompatible materials, Biomaterial, Bone, Bone development, Bone formation, Bone regeneration, Calcium phosphate, Calcium phosphate materials, Calcium phosphates, Cd14 antigen, Cell differentiation, Cell engineering, Cell maturation, Cell survival, Ceramics, Chemical composition, Controlled study, Correlation analysis, Correlation coefficient, Data correlation, Durapatite, Engraftment, Flowcharting, Human, Human cell, Human mesenchymal stromal cell, Human mesenchymal stromal cells, Humans, Hydroxyapatite, Hydroxyapatites, In vitro study, In vivo study, In-vitro, In-vivo, Mammals, Material composition, Material compositions, Mesenchymal stroma cell, Mesenchymal stromal cells, Mice, Mice, nude, Monocyte, Mouse, Nonhuman, Nude mouse, Ossification, Osteoclast, Osteoclastogenesis, Osteoclasts, Osteogenesis, Phase composition, Subcutaneous tissue, Tissue engineering, Transmission control protocol, Tri-calcium phosphates, Vimentin


Garcia-de-Albeniz, N, Ginebra, MP, Jimenez-Piqué, E, Roa, JJ, Mas-Moruno, C, (2024). Influence of nanosecond laser surface patterning on dental 3Y-TZP: Effects on the topography, hydrothermal degradation and cell response Dental Materials 40, 139-150

Laser surface micropatterning of dental-grade zirconia (3Y-TZP) was explored with the objective of providing defined linear patterns capable of guiding bone-cell response.A nanosecond (ns-) laser was employed to fabricate microgrooves on the surface of 3Y-TZP discs, yielding three different groove periodicities (i.e., 30, 50 and 100 µm). The resulting topography and surface damage were characterized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). X-Ray diffraction (XRD) and Raman spectroscopy techniques were employed to assess the hydrothermal degradation resistance of the modified topographies. Preliminary biological studies were conducted to evaluate adhesion (6 h) of human mesenchymal stem cells (hMSC) to the patterns in terms of cell number and morphology. Finally, Staphylococcus aureus adhesion (4 h) to the microgrooves was investigated.The surface analysis showed grooves of approximately 1.8 µm height that exhibited surface damage in the form of pile-up at the edge of the microgrooves, microcracks and cavities. Accelerated aging tests revealed a slight decrease of the hydrothermal degradation resistance after laser patterning, and the Raman mapping showed the presence of monoclinic phase heterogeneously distributed along the patterned surfaces. An increase of the hMSC area was identified on all the microgrooved surfaces, although only the 50 µm periodicity, which is closer to the cell size, significantly favored cell elongation and alignment along the grooves. A decrease in Staphylococcus aureus adhesion was observed on the investigated micropatterns.The study suggests that linear microgrooves of 50 µm periodicity may help in promoting hMSC adhesion and alignment, while reducing bacterial cell attachment.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

JTD Keywords: abutment material, alumina toughened zirconia, antibacterial, bacterial adhesion, biofilm growth, cell adhesion, dental implants, hydrothermal degradation, implant surfaces, in-vitro, laser patterning, osseointegration, osteogenic differentiation, part 1, surface topography, y-tzp ceramics, Antibacterial, Antibacterials, Bacteria, Bone, Cell adhesion, Cell culture, Cells adhesion, Ceramics, Chemistry, Degradation resistance, Dental implants, Dental material, Dental materials, Dental prostheses, Human, Human mesenchymal stem cells, Humans, Hydrothermal degradation, Laser patterning, Laser surface, Lasers, Low-temperature degradation, Materials testing, Microscopy, electron, scanning, Nanosecond lasers, Osseointegration, Piles, Scanning electron microscopy, Staphylococcus aureus, Stem cells, Surface analysis, Surface damages, Surface properties, Surface property, Surface topography, Topography, Yttrium, Zirconia, Zirconium


Widhe, M, Diez-Escudero, A, Liu, YL, Ringstrom, N, Ginebra, MP, Persson, C, Hedhammar, M, Mestres, G, (2022). Functionalized silk promotes cell migration into calcium phosphate cements by providing macropores and cell adhesion motifs Ceramics International 48, 31449-31460

Calcium phosphate cements (CPCs) are attractive synthetic bone grafts as they possess osteoconductive and osteoinductive properties. Their biomimetic synthesis grants them an intrinsic nano-and microporosity that resembles natural bone and is paramount for biological processes such as protein adhesion, which can later enhance cell adhesion. However, a main limitation of CPCs is the lack of macroporosity, which is crucial to allow cell colonization throughout the scaffold. Moreover, CPCs lack specific motifs to guide cell interactions through their membrane proteins. In this study, we explore a strategy targeting simultaneously both macroporosity and cell binding motifs within CPCs by the use of recombinant silk. A silk protein functionalized with the cell binding motif RGD serves as foaming template of CPCs to achieve biomimetic hydroxyapatite (HA) scaffolds with multiscale porosity. The synergies of RGD-motifs in the silk macroporous template and the biomimetic features of HA are explored for their potential to enhance mesenchymal stem cell adhesion, proliferation, migration and differentiation. Macroporous Silk-HA scaffolds improve initial cell adhesion compared to a macroporous HA in the absence of silk, and importantly, the presence of silk greatly enhances cell migration into the scaffold. Additionally, cell proliferation and osteogenic differentiation are achieved in the scaffolds.

JTD Keywords: Bioceramics, Bone, Bone regeneration, Composites, Degradation, Fabrication, Hydroxyapatite, Hydroxyapatite scaffolds, Injectability, Porosity, Recombinant spider silk, Rgd motifs, Silk, Stem-cells


Raymond, Y, Johansson, L, Thorel, E, Ginebra, MP, (2022). Translation of three-dimensional printing of ceramics in bone tissue engineering and drug delivery Mrs Bulletin 47, 59-69

Konka, J, Buxadera-Palomero, J, Espanol, M, Ginebra, MP, (2021). 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments Acta Biomaterialia 134, 744-759

Porosity plays a key role on the osteogenic performance of bone scaffolds. Direct Ink Writing (DIW) allows the design of customized synthetic bone grafts with patient-specific architecture and controlled macroporosity. Being an extrusion-based technique, the scaffolds obtained are formed by arrays of cylindrical filaments, and therefore have convex surfaces. This may represent a serious limitation, as the role of surface curvature and more specifically the stimulating role of concave surfaces in osteoinduction and bone growth has been recently highlighted. Hence the need to design strategies that allow the introduction of concave pores in DIW scaffolds. In the current study, we propose to add gelatin microspheres as a sacrificial material in a self-setting calcium phosphate ink. Neither the phase transformation responsible for the hardening of the scaffold nor the formation of characteristic network of needle-like hydroxyapatite crystals was affected by the addition of gelatin microspheres. The partial dissolution of the gelatin resulted in the creation of spherical pores throughout the filaments and exposed on the surface, increasing filament porosity from 0.2 % to 67.9 %. Moreover, the presence of retained gelatin proved to have a significant effect on the mechanical properties, reducing the strength but simultaneously giving the scaffolds an elastic behavior, despite the high content of ceramic as a continuous phase. Notwithstanding the inherent difficulty of in vitro cultures with this highly reactive material an enhancement of MG-63 cell proliferation, as well as better spreading of hMSCs was recorded on the developed scaffolds. Statement of significance: Recent studies have stressed the role that concave surfaces play in tissue regeneration and, more specifically, in osteoinduction and osteogenesis. Direct ink writing enables the production of patient-specific bone grafts with controlled architecture. However, besides many advantages, it has the serious limitation that the surfaces obtained are convex. In this article, for the first time we develop a strategy to introduce concave pores in the printed filaments of biomimetic hydroxyapatite by incorporation and partial dissolution of gelatin microspheres. The retention of part of the gelatin results in a more elastic behavior compared to the brittleness of hydroxyapatite scaffolds, while the needle-shaped nanostructure of biomimetic hydroxyapatite is maintained and gelatin-coated concave pores on the surface of the filaments enhance cell spreading. © 2021 The Authors

JTD Keywords: 3d printing, bioceramics, biomimetic, bone, bone regeneration, concavity, concavity, bone regeneration, gelatin, hydrogel, hydroxyapatite, microspheres, osteoinduction, porosity, porous filament, substitutes, tissue-growth, 3d printing, Biomimetic, Calcium-phosphate scaffolds, Concavity, bone regeneration, Gelatin, Hydroxyapatite, Porous filament


Raymond, Y, Thorel, E, Liversain, M, Riveiro, A, Pou, J, Ginebra, MP, (2021). 3D printing non-cylindrical strands: Morphological and structural implications Additive Manufacturing 46, 102129

Conventional direct ink writing uses circular nozzles and, therefore, results in cylindrical strands. 3D printing with non-circular nozzles adds new degrees of freedom to this versatile technology, and allows obtaining structures with higher specific surface area or even introducing concave surfaces in the printed architecture. This is an enticing prospect for countless applications, including tissue engineering, chemical reaction catalysts, water evaporators and electrochemical energy storage devices. Despite this, it has been hardly explored by the 3D-printing community. Herein, we develop for the first time 3D printed structures with complex filament section morphologies using a custom-made modular nozzle and a self-setting ceramic ink. The fast elastic recovery of the ink allows obtaining good shape fidelity in the printed filaments, permitting the creation of intricate surfaces with up to 30% concavity and increasing up to 2.5 times the specific surface area compared to cylindrical strands. The use of non-circular nozzles introduces some specific constraints in the printing process. The geometry of the nozzle determines the stable printing directions, and nozzle orientation becomes a critical parameter to achieve a stable printing. Strand torsion, a phenomenon that remains unnoticed with circular nozzles, may result in relevant changes in the geometrical features of the printed structures.

JTD Keywords: calcium phosphate, ceramic, ceramics, flow, geometry, microextrusion, robocasting, Calcium phosphate, Ceramic, Direct ink writing, Microextrusion, Robocasting, Scaffolds


Montufar, E. B., Gil, C., Traykova, T., Ginebra, M. P., Planell, J., (2008). Foamed beta-tricalcium phosphate scaffolds Bioceramics: Key Engineering Materials 20th International Symposium on Ceramics in Medicine (ed. Daculsi, G., Layrolle, P.), Trans Tech Publications Ltd (Nantes, France) 20, 323-326

The design and processing of 3D macroporous bioactive scaffolds is one of the milestones for the progress of bone tissue engineering and bone regeneration. Calcium phosphate based ceramics are among the most suitable materials, due to their similarity to the bone mineral. Specifically, beta-tricalcium phosphate (beta-TCP) is known to be a resorbable and bioactive material, with well established applications as bone regeneration material. The aim of this work is to explore a new OF route to obtain beta-TCP macroporous scaffolds starting from calcium phosphate cements. To this end foamed calcium phosphate cement.. composed of alpha tricalcium phosphate as starting powder was used as initial material. The set foamed structures, made of calcium deficient hydroxyapatite (CDHA) were sintered to obtain the final beta-TCP macroporous architecture. The interconnected macroporosity was maintained.. whereas the porosity in the nanometric range was strongly reduced by the sintering process. The sintering produced also an increase in the mechanical properties of the scaffold.

JTD Keywords: Calcium-phosphate ceramics, Cements, Scaffolds, Foams, Macroporous, Tissue engineering