by Keyword: Cadherin adhesion

Beedle, AEM, Garcia-Manyes, S, (2023). The role of single-protein elasticity in mechanobiology Nature Reviews Materials 8, 10-24

Mechanical force modulates the conformation and function of individual proteins, and this underpins many mechanically driven cellular processes. This Review addresses single-molecule force spectroscopy experiments conducted on proteins with a known role in mechanosensing and mechanotransduction in eukaryotic cells.; In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. However, the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are not well understood in comparison. With the advent, development and refining of single-molecule nanomechanical techniques that enable the conformational dynamics of individual proteins under the effect of a calibrated force to be probed, we have begun to acquire a comprehensive knowledge of the diverse physicochemical principles that regulate the elasticity of single proteins. Here, we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of this prolific and burgeoning field.

JTD Keywords: Cadherin adhesion, Energy landscape, Extracellular-matrix protein, Focal adhesion kinase, Mechanical stability, Molecule force spectroscopy, Muscle protein, N2b element, Stranded-dna, Structural basis