by Keyword: Cell analysis
Liu, M, Zhang, C, Gong, XM, Zhang, T, Lian, MM, Chew, EGY, Cardilla, A, Suzuki, K, Wang, HM, Yuan, Y, Li, Y, Naik, MY, Wang, YX, Zhou, BR, Soon, WZ, Aizawa, E, Li, P, Low, JH, Tandiono, M, Montagud, E, Moya-Rull, D, Esteban, CR, Luque, Y, Fang, ML, Khor, CC, Montserrat, N, Campistol, JM, Belmonte, JCI, Foo, JN, Xia, Y, (2024). Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo Cell Stem Cell 31, 52-70.e8
Human pluripotent stem cell -derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single -cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA -approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.
JTD Keywords: Adenylate kinase, Adult, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Autophagosome, Autophagy, Autophagy (cellular), Autosomal-dominant, Calcium homeostasis, Cilia, Cilium, Cohort analysis, Controlled study, Cyclic amp, Disease, Dominant polycystic kidney, Enzyme linked immunosorbent assay, Epithelium, Exon, Expression, Female, Food and drug administration, Framework, Generation, Growth, Hepatitis a virus cellular receptor 1, Human, Human cell, Humans, Immunohistochemistry, In vitro study, In vivo study, Kidney, Kidney organoid, Kidney polycystic disease, Male, Minoxidil, Mouse, Mutations, Nonhuman, Organoid, Organoids, Platelet derived growth factor beta receptor, Pluripotent stem-cells, Polycystic kidney diseases, Protein kinase lkb1, Renin, Sequestosome 1, Single cell analysis, Single cell rna seq, Small nuclear rna, Tunel assay, Upregulation, Western blotting, Whole exome sequencing
Ino, Kosuke, Nashimoto, Yuji, Taira, Noriko, Ramón-Azcon, Javier, Shiku, Hitoshi, (2018). Intracellular electrochemical sensing Electroanalysis 30, (10), 2195-2209
Observing biochemical processes within living cell is imperative for biological and medical research. Fluoresce imaging is widely used for intracellular sensing of cell membranes, nuclei, lysosomes, and pH. Electrochemical assays have been proposed as an alternative to fluorescence-based assays because of excellent analytical features of electrochemical devices. Notably, thanks to the rapid progress of micro/nanotechnologies and electrochemical techniques, intracellular electrochemical sensing is making rapid progress, leading to a successful detection of intracellular components. Such insight can provide a deep understanding of cellular biological processes and, ultimately, define the human healthy and diseased states. In this review, we present an overview of recent research progress in intracellular electrochemical sensing. We focus on two main topics, electrochemical extraction of cytosolic contents from cells and intracellular electrochemical sensing in situ.
JTD Keywords: Micro/nanoelectrode, Analytical electrochemistry, Intracellular sensing, Cell analysis
Torras, Núria, Agusil, Juan Pablo, Vázquez, Patricia, Duch, Marta, Hernández-Pinto, Alberto M., Samitier, Josep, de la Rosa, Enrique J., Esteve, Jaume, Suárez, Teresa, Pérez-García, Lluïsa, Plaza, José A., (2016). Suspended planar-array chips for molecular multiplexing at the microscale Advanced Materials 28, (7), 1449–1454
A novel suspended planar-array chips technology is described, which effectively allows molecular multiplexing using a single suspended chip to analyze extraordinarily small volumes. The suspended chips are fabricated by combining silicon-based technology and polymer-pen lithography, obtaining increased molecular pattern flexibility, and improving miniaturization and parallel production. The chip miniaturization is so dramatic that it permits the intracellular analysis of living cells.
JTD Keywords: Chip-in-a-cell, Suspended-arrays, Planar-arrays, Silicon chips, Single-cell analysis