by Keyword: Charge screening
Perez-Chirinos, Laura, Barcelo, Xavier, Chiariello, M Gabriella, Sanz, Irene, Iturrospe, Amaia, Arbe, Arantxa, Ortega, J Alberto, Marrink, Siewert J, Cortajarena, Aitziber L, Alvarez, Zaida, Sasselli, Ivan R, (2025). Peptide Electrostatic Modulation Directs Human Neural Cell Fate Advanced Science ,
Supramolecular self-assembled systems have emerged as versatile platforms for engineering biomimetic environments that precisely regulate cellular behavior. These materials have tunable properties such as stiffness, hydrophobicity, and molecular composition, allowing for customization of their structure and function. Despite significant advances, the specific role of electrostatic properties in modulating cellular responses within supramolecular assemblies remains poorly understood. Here, a peptide library with diverse electrostatic profiles is designed to systematically investigate their influence on the bioactivity of supramolecular assemblies for neural regeneration. Combining computational and experimental methods, the self-assembly conditions of these peptides are optimized to create stable, biologically relevant architectures. Using human neural progenitor cell (hNPC) cultures, it is demonstrated that negatively charged environments enhance cell survival and promote neuronal differentiation. Specifically, high negative charges activate critical signaling pathways, including the mitogen-activated protein kinase (MAPK) cascade and cell adhesion mechanisms, leading to neuronal lineage commitment. This study establishes a novel framework for the design of supramolecular systems, offering an unprecedented ability to analyze specific parameters in cell behavior. By achieving control beyond conventional biomaterials, this work provides valuable insights into the complex interplay of biophysical and biochemical cues in the native neural microenvironment, with implications for regenerative medicine and biomaterial design.
JTD Keywords: Charge screening, Death, Design, Extracellular-matrix, Force-field, Human neural progenitor cells, Membrane, Molecular dynamics, Nervous-system, Proteomics, Scaffolds, Self-assemblies, Supramolecular structures
Artés, Juan M., Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2011). Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy ACS Nano 5, (3), 2060-2066
We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using
an electrochemical tunneling microscope under bipotentiostatic control, we obtained current-distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.
JTD Keywords: Long-range electron transfer (LRET), Distance decay constant, Single-molecule electrochemistry, Redox enzyme, Metalloprotein, Blue copper protein, Azurin, Electrochemical scanning tunneling microscopy and spectroscopy, Nanoelectrodes, Debye length, Electrochemical charge screening