by Keyword: Force-field
Perez-Chirinos, Laura, Barcelo, Xavier, Chiariello, M Gabriella, Sanz, Irene, Iturrospe, Amaia, Arbe, Arantxa, Ortega, J Alberto, Marrink, Siewert J, Cortajarena, Aitziber L, Alvarez, Zaida, Sasselli, Ivan R, (2025). Peptide Electrostatic Modulation Directs Human Neural Cell Fate Advanced Science ,
Supramolecular self-assembled systems have emerged as versatile platforms for engineering biomimetic environments that precisely regulate cellular behavior. These materials have tunable properties such as stiffness, hydrophobicity, and molecular composition, allowing for customization of their structure and function. Despite significant advances, the specific role of electrostatic properties in modulating cellular responses within supramolecular assemblies remains poorly understood. Here, a peptide library with diverse electrostatic profiles is designed to systematically investigate their influence on the bioactivity of supramolecular assemblies for neural regeneration. Combining computational and experimental methods, the self-assembly conditions of these peptides are optimized to create stable, biologically relevant architectures. Using human neural progenitor cell (hNPC) cultures, it is demonstrated that negatively charged environments enhance cell survival and promote neuronal differentiation. Specifically, high negative charges activate critical signaling pathways, including the mitogen-activated protein kinase (MAPK) cascade and cell adhesion mechanisms, leading to neuronal lineage commitment. This study establishes a novel framework for the design of supramolecular systems, offering an unprecedented ability to analyze specific parameters in cell behavior. By achieving control beyond conventional biomaterials, this work provides valuable insights into the complex interplay of biophysical and biochemical cues in the native neural microenvironment, with implications for regenerative medicine and biomaterial design.
JTD Keywords: Charge screening, Death, Design, Extracellular-matrix, Force-field, Human neural progenitor cells, Membrane, Molecular dynamics, Nervous-system, Proteomics, Scaffolds, Self-assemblies, Supramolecular structures
Smith, CS, Alvarez, Z, Qiu, RM, Sasselli, IR, Clemons, T, Ortega, JA, Vilela-Picos, M, Wellman, H, Kiskinis, E, Stupp, SI, (2023). Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber Acs Nano 17, 19887-19902
Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.
JTD Keywords: axon growth, axon guidance, cell-migration, colorectal-cancer, dcc, dopaminergic-neurons, force-field, functional recovery, netrin-1, neurite outgrowth, neuronal maturation, neurotrophic factor, neurotrophicfactor mimetic, synapsis, Axon growth, Axons, Cells, cultured, Central nervous system, Coarse-grained model, Nanofibers, Netrin-1, Neurogenesis, Neuronal maturation, Neurons, Neurotrophic factor mimetic, Peptide amphiphile, Synapsis
Alvarez, Z, Ortega, JA, Sato, K, Sasselli, IR, Kolberg-Edelbrock, AN, Qiu, RM, Marshall, KA, Nguyen, TP, Smith, CS, Quinlan, KA, Papakis, V, Syrgiannis, Z, Sather, NA, Musumeci, C, Engel, E, Stupp, SI, Kiskinis, E, (2023). Artificial extracellular matrix scaffolds of mobile molecules enhance maturation of human stem cell-derived neurons Cell Stem Cell 30, 219-238
Human induced pluripotent stem cell (hiPSC) technologies offer a unique resource for modeling neurological diseases. However, iPSC models are fraught with technical limitations including abnormal aggregation and inefficient maturation of differentiated neurons. These problems are in part due to the absence of synergistic cues of the native extracellular matrix (ECM). We report on the use of three artificial ECMs based on peptide amphiphile (PA) supramolecular nanofibers. All nanofibers display the laminin-derived IKVAV signal on their surface but differ in the nature of their non-bioactive domains. We find that nanofibers with greater intensity of internal supramolecular motion have enhanced bioactivity toward hiPSC-derived motor and cortical neurons. Proteomic, biochemical, and functional assays reveal that highly mobile PA scaffolds caused enhanced β1-integrin pathway activation, reduced aggregation, increased arborization, and matured electrophysiological activity of neurons. Our work highlights the importance of designing biomimetic ECMs to study the development, function, and dysfunction of human neurons.Copyright © 2022 Elsevier Inc. All rights reserved.
JTD Keywords: differentiation, force-field, laminin, migration, nanostructures, peptide amphiphiles, spinal-cord, statistical-model, supramolecular materials, Coarse-grained model, Dynamics, Extracellular matrix, Ikvav, Ipsc-derived neurons, Laminin, Neuronal maturation, Peptide amphiphiles, Supramolecular motion, Supramolecular nanofibers