DONATE

Publications

by Keyword: Click chemistry

Bonardd, S, Maiti, B, Grijalvo, S, Rodriguez, J, Enshaei, H, Kortaberria, G, Aleman, C, Diaz, DD, (2022). Biomass-derived isosorbide-based thermoresponsive hydrogel for drug delivery Soft Matter 18, 4963-4972

Herein, we describe the design and synthesis of a new variety of bio-based hydrogel films using a Cu(i)-catalyzed photo-click reaction. These films exhibited thermal-triggered swelling-deswelling and were constructed by crosslinking a triazide derivative of glycerol ethoxylate and dialkyne structures derived from isosorbide, a well-known plant-based platform molecule. The success of the click reaction was corroborated through infrared spectroscopy (FTIR) and the smooth surface of the obtained films was confirmed by scanning electron microscopy (SEM). The thermal characterization was carried out in terms of thermogravimetry (TGA) and differential scanning calorimetry (DSC), from which the decomposition onset and glass transition temperatures were determined, respectively. Additionally, mechanical properties of the samples were estimated by stress-strain experiments. Then, their swelling and deswelling properties were systematically examined in PBS buffer, revealing a thermoresponsive behavior that was successfully tested in the release of the anticancer drug doxorubicin. We also confirmed the non-cytotoxicity of these materials, which is a fundamental aspect for their potential use as drug carriers or tissue engineering matrices.

JTD Keywords: Biology, Click chemistry, Growth, Release


Martin-Gómez, H, Oliver-Cervelló, L, Sánchez-Campillo, I, Marchán, V, Ginebra, MP, Mas-Moruno, C, (2021). A versatile click chemistry-based approach for functionalizing biomaterials of diverse nature with bioactive peptides Chemical Communications 57, 982-985

© The Royal Society of Chemistry 2021. A novel and versatile toolkit approach for the functionalization of biomaterials of different nature is described. This methodology is based on the solid-phase conjugation of specific anchoring units onto a resin-bound azido-functionalized peptide by using click chemistry. A synergistic multifunctional peptidic scaffold with cell adhesive properties was used as a model compound to showcase the versatility of this new approach. Titanium, gold and polylactic acid surfaces were biofunctionalized by this method, as validated by physicochemical surface characterization with XPS.In vitroassays using mesenchymal stem cells showed enhanced cell adhesion on the functionalized samples, proving the capacity of this strategy to efficiently bioactivate different types of biomaterials.

JTD Keywords: Biocompatible materials, Click chemistry, Peptides, Protein conformation


Galán, T., Prieto-Simón, B., Alvira, M., Eritja, R., Götz, G., Bäuerle, P., Samitier, J., (2015). Label-free electrochemical DNA sensor using "click"-functionalized PEDOT electrodes Biosensors and Bioelectronics 74, 751-756

Here we describe a label-free electrochemical DNA sensor based on poly(3,4-ethylenedioxythiophene)-modified (PEDOT-modified) electrodes. An acetylene-terminated DNA probe, complementary to a specific "Hepatitis C" virus sequence, was immobilized onto azido-derivatized conducting PEDOT electrodes using "click" chemistry. DNA hybridization was then detected by differential pulse voltammetry, evaluating the changes in the electrochemical properties of the polymer produced by the recognition event. A limit of detection of 0.13. nM was achieved using this highly selective PEDOT-based genosensor, without the need for labeling techniques or microelectrode fabrication processes. These results are promising for the development of label-free and reagentless DNA hybridization sensors based on conducting polymeric substrates. Biosensors can be easily prepared using any DNA sequence containing an alkyne moiety. The data presented here reveal the potential of this DNA sensor for diagnostic applications in the screening of diseases, such as "Hepatitis C", and genetic mutations.

JTD Keywords: Azido-EDOT, Click chemistry, Differential pulse voltammetry, DNA biosensor, Electrochemistry, Hepatitis C virus


Oberhansl, Sabine, Hirtz, Michael, Lagunas, Anna, Eritja, Ramon, Martinez, Elena, Fuchs, Harald, Samitier, Josep, (2012). Facile modification of silica substrates provides a platform for direct-writing surface click chemistry Small 8, (4), 541-545