DONATE

Publications

by Keyword: Diabetes-mellitus

Munoz-Galan, H, Molina, BG, Bertran, O, Perez-Madrigal, MM, Aleman, C, (2022). Combining rapid and sustained insulin release from conducting hydrogels for glycemic control br European Polymer Journal 181, 111670

Innovative insulin delivery systems contemplate combining multi-pharmacokinetic profiles for glycemic control. Two device configurations have been designed for the controlled release of insulin using the same chemical compounds. The first insulin delivery system, which displays a rapid release response that, in addition, is enhanced on a short time scale by electrical stimulation, consists on an insulin layer sandwiched between a conducting poly(3,4-ethylenedioxythiophene) (PEDOT) film and a poly-gamma-glutamic acid (gamma-PGA) hydrogel. The second system is constituted by gamma-PGA hydrogel loaded with insulin and PEDOT nanoparticles by in situ gelation. In this case, the insulin release, which only starts after the degradation of the hydrogel over time (i.e. on a long time scale), is slow and sustained. The combination of an on-demand and fast release profile with a sustained and slow profile, which act on different time scales, would result in a very efficient regulation of diabetes therapy in comparison to current systems, allowing to control both fast and sustained glycemic events. Considering that the two systems developed in this work are based on the same chemical components, future work will be focused on the combination of the two kinetic profiles by re-engineering a unique insulin release device using gamma-PGA, PEDOT and insulin.

JTD Keywords: Conducting polymer, Constant, Diabetes, Diabetes-mellitus, Drug-delivery, Electrodes, Electrostimulation, Glucose-responsive hydrogels, Hydrogel, Molecular dynamics, Molecular-dynamics, Nanogels, Nanoparticles, Poly(3,4-ethylenedioxythiophene), Risk