by Keyword: Envelope

Kechagia, Z, Roca-Cusachs, P, (2023). Cytoskeletal safeguards: Protecting the nucleus from mechanical perturbations Curr Opin Biomed Eng 28, 100494

The cell nucleus plays a key role in cellular mechanoresponses. 3D genome organisation, gene expression, and cell behaviour, in general, are affected by mechanical force application to the nucleus, which is transmitted from the cellular environment via a network of interconnected cytoskeletal components. To effectively regulate cell responses, these cytoskeletal components must not only exert forces but also withstand external forces when necessary. This review delves into the latest research concerning how the cytoskeleton safeguards the nucleus from mechanical perturbations. Spe-cifically, we focus on the three primary cytoskeletal polymers: actin, intermediate filaments, and microtubules, as well as their interactions with the cell nucleus. We discuss how the cyto-skeleton acts as a protective shield for the nucleus, ensuring structural integrity and conveying context-specific mechanoresponses.

JTD Keywords: Actin, Architecture, Cytoskeleton, Envelope, F-actin, Filaments, Force, Genome, Intermediate filaments, Lamin, Mechanotransduction, Membrane protein, Microtubules, Nesprin-1, Nucleus

Quaglierini, J, Arroyo, M, Desimone, A, (2023). Mechanics of tubular meshes formed by elastic helical fibers International Journal Of Solids And Structures 282, 112451

Tubular structures made of elastic helical fibers are widely found in nature and in technology. The complex and highly nonlinear mechanical properties of such assemblies have been understood either through minimal models or through complex simulations describing each individual fiber and their interactions. Here, inspired by Chebyshev's geometric model of nets, we propose and experimentally validate a modeling framework that treats tubular braided meshes as continuum surfaces corresponding to the virtual envelope defined by the fibers. The key idea is to relate surface geometry and fiber kinematics, enabling us to follow large deformations. This theory is amenable to efficient computations and, in axisymmetric cases, the problem reduces to finding two scalar fields defined over 1D segments. We validate our model against experiments of axial compression, revealing the existence of a plateau with vanishing stiffness in the axial force-displacement curve, a feature that could prove particularly useful in applications where an applied compressive force needs to be held constant even against settlements of the compressed object.

JTD Keywords: Braided mesh, Chebyshev nets, Computational mechanics, Design, Elastic rods, Envelope surface, Equilibrium, Hélices, Muscle

Martí, D, Alemán, C, Ainsley, J, Ahumada, O, Torras, J, (2022). IgG1-b12–HIV-gp120 Interface in Solution: A Computational Study Journal Of Chemical Information And Modeling 62, 359-371

The use of broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) has been shown to be a promising therapeutic modality in the prevention of HIV infection. Understanding the b12-gp120 binding mechanism under physiological conditions may assist the development of more broadly effective antibodies. In this work, the main conformations and interactions between the receptor-binding domain (RBD) of spike glycoprotein gp120 of HIV-1 and the IgG1-b12 mAb are studied. Accelerated molecular dynamics (aMD) and ab initio hybrid molecular dynamics have been combined to determine the most persistent interactions between the most populated conformations of the antibody-antigen complex under physiological conditions. The results show the most persistent receptor-binding mapping in the conformations of the antibody-antigen interface in solution. The binding-free-energy decomposition reveals a small enhancement in the contribution played by the CDR-H3 region to the b12-gp120 interface compared to the crystal structure.

JTD Keywords: antibody, complex, functionals, gp120 envelope glycoprotein, hiv, immunodeficiency-virus, noncovalent interactions, simulations, software integration, Ab initio, Accelerated molecular dynamics, Accelerated molecular-dynamics, Antibodies, Antigens, Binding energy, Binding mechanisms, Computational studies, Crystal structure, Diseases, Free energy, Hiv infection, Human immunodeficiency virus, Molecular dynamics, Neutralizing antibodies, Physiological condition, Physiology, Receptor-binding domains, Therapeutic modality, Viruses

Gómez-Domínguez, D., Epifano, C., Miguel, F., Castaño, A. G., Vilaplana-Martí, B., Martín, A., Amarilla-Quintana, S., Bertrand, A. T., Bonne, G., Ramón-Azcón, J., Rodríguez-Milla, M. A., Pérez de Castro, I., (2020). Consequences of Lmna exon 4 mutations in myoblast function Cells 9, (5), 1286

Laminopathies are causally associated with mutations on the Lamin A/C gene (LMNA). To date, more than 400 mutations in LMNA have been reported in patients. These mutations are widely distributed throughout the entire gene and are associated with a wide range of phenotypes. Unfortunately, little is known about the mechanisms underlying the effect of the majority of these mutations. This is the case of more than 40 mutations that are located at exon 4. Using CRISPR/Cas9 technology, we generated a collection of Lmna exon 4 mutants in mouse C2C12 myoblasts. These cell models included different types of exon 4 deletions and the presence of R249W mutation, one of the human variants associated with a severe type of laminopathy, LMNA-associated congenital muscular dystrophy (L-CMD). We characterized these clones by measuring their nuclear circularity, myogenic differentiation capacity in 2D and 3D conditions, DNA damage, and levels of p-ERK and p-AKT (phosphorylated Mitogen-Activated Protein Kinase 1/3 and AKT serine/threonine kinase 1). Our results indicated that Lmna exon 4 mutants showed abnormal nuclear morphology. In addition, levels and/or subcellular localization of different members of the lamin and LINC (LInker of Nucleoskeleton and Cytoskeleton) complex were altered in all these mutants. Whereas no significant differences were observed for ERK and AKT activities, the accumulation of DNA damage was associated to the Lmna p.R249W mutant myoblasts. Finally, significant myogenic differentiation defects were detected in the Lmna exon 4 mutants. These results have key implications in the development of future therapeutic strategies for the treatment of laminopathies.

JTD Keywords: CRISPR, Laminopathy, LMNA, Nuclear envelope