by Keyword: Hemodynamic

Praktiknjo, M., Monteiro, S., Grandt, J., Kimer, N., Madsen, J. L., Werge, M. P., William, P., Brol, M. J., Turco, L., Schierwagen, R., Chang, J., Klein, S., Uschner, F. E., Welsch, C., Moreau, R., Schepis, F., Bendtsen, F., Gluud, L. L., Møller, S., Trebicka, J., (2020). Cardiodynamic state is associated with systemic inflammation and fatal acute-on-chronic liver failure Liver International 40, (6), 1457-1466

Background & Aims: Acute-on-chronic liver failure (ACLF) is characterized by high short-term mortality and systemic inflammation (SI). Recently, different cardiodynamic states were shown to independently predict outcomes in cirrhosis. The relationship between cardiodynamic states, SI, and portal hypertension and their impact on ACLF development remains unclear. The aim of this study was therefore to evaluate the interplay of cardiodynamic state and SI on fatal ACLF development in cirrhosis. Results: At inclusion, hemodynamic measures including cardiac index (CI) and hepatic venous pressure gradient of 208 patients were measured. Patients were followed prospectively for fatal ACLF development (primary endpoint). SI was assessed by proinflammatory markers such as interleukins (ILs) 6 and 8 and soluble IL-33 receptor (sIL-33R). Patients were divided according to CI (<3.2; 3.2-4.2; >4.2 L/min/m2) in hypo- (n = 84), normo- (n = 69) and hyperdynamic group (n = 55). After a median follow-up of 3 years, the highest risk of fatal ACLF was seen in hyperdynamic (35%) and hypodynamic patients (25%) compared with normodynamic (14%) (P = .011). Hyperdynamic patients showed the highest rate of SI. The detectable level of IL-6 was an independent predictor of fatal ACLF development. Conclusions: Cirrhotic patients with hyperdynamic and hypodynamic circulation have a higher risk of fatal ACLF. Therefore, the cardiodynamic state is strongly associated with SI, which is an independent predictor of development of fatal ACLF.

JTD Keywords: Acute-on-chronic liver failure, Circulation, Cirrhosis, Hemodynamic, Inflammation

Cagido, Viviane Ramos, Zin, Walter Araujo, Ramirez, Jose, Navajas, Daniel, Farre, Ramon, (2011). Alternating ventilation in a rat model of increased abdominal pressure Respiratory Physiology & Neurobiology , 175, (3), 310-315

During alternating ventilation (AV) one lung is inflating while the other is deflating. Considering the possible respiratory and hemodynamic advantages of AV, we investigated its effects during increased intra-abdominal pressure (IAP = 10 mmHg). In Sprague-Dawley rats (n = 6, 270–375 g) the main bronchi were independently cannulated, and respiratory mechanics determined while animals underwent different ventilatory patterns: synchronic ventilation without increased IAP (SV-0), elevated IAP during SV (SV-10), and AV with elevated IAP (AV-10). Thirty-three other animals (SV-0, n = 10; SV-10, n = 11 and AV-10, n = 12) were ventilated during 3 h. Mean arterial pressure (MAP), and lung histology were assessed. Increased IAP resulted in significantly higher elastances (p < 0.001), being AV-10 lower than SV-10 (p < 0.020). SV-10 showed higher central venous pressure (p < 0.003) than S-0; no change was observed in AV-10. Wet/dry lung weight ratio was lower in AV-10 than SV-10 (p = 0.009). Application of AV reduced hemodynamic and lung impairments induced by increased IAP during SV.

JTD Keywords: Alternating ventilation, Respiratory mechanics, Intra-abdominal pressure, Hemodynamic, Mechanical ventilation, Animal model