by Keyword: Hemodynamic

Gregori-Pla, C, Zirak, P, Cotta, G, Bramon, P, Blanco, I, Serra, I, Mola, A, Fortuna, A, Solà-Soler, J, Giraldo, BFG, Durduran, T, Mayos, M, (2023). How does obstructive sleep apnea alter cerebral hemodynamics? Sleep 46, zsad122

We aimed to characterize the cerebral hemodynamic response to obstructive sleep apnea/hypopnea events, and evaluate their association to polysomnographic parameters. The characterization of the cerebral hemodynamics in obstructive sleep apnea (OSA) may add complementary information to further the understanding of the severity of the syndrome beyond the conventional polysomnography.Severe OSA patients were studied during night sleep while monitored by polysomnography. Transcranial, bed-side diffuse correlation spectroscopy (DCS) and frequency-domain near-infrared diffuse correlation spectroscopy (NIRS-DOS) were used to follow microvascular cerebral hemodynamics in the frontal lobes of the cerebral cortex. Changes in cerebral blood flow (CBF), total hemoglobin concentration (THC), and cerebral blood oxygen saturation (StO2) were analyzed.We considered 3283 obstructive apnea/hypopnea events from sixteen OSA patients (Age (median, interquartile range) 57 (52-64.5); females 25%; AHI (apnea-hypopnea index) 84.4 (76.1-93.7)). A biphasic response (maximum/minimum followed by a minimum/maximum) was observed for each cerebral hemodynamic variable (CBF, THC, StO2), heart rate and peripheral arterial oxygen saturation (SpO2). Changes of the StO2 followed the dynamics of the SpO2, and were out of phase from the THC and CBF. Longer events were associated with larger CBF changes, faster responses and slower recoveries. Moreover, the extrema of the response to obstructive hypopneas were lower compared to apneas (p < .001).Obstructive apneas/hypopneas cause profound, periodic changes in cerebral hemodynamics, including periods of hyper- and hypo-perfusion and intermittent cerebral hypoxia. The duration of the events is a strong determinant of the cerebral hemodynamic response, which is more pronounced in apnea than hypopnea events.© The Author(s) 2023. Published by Oxford University Press on behalf of Sleep Research Society.

JTD Keywords: cerebral hemodynamics, desaturation, diffuse correlation spectroscopy, duration, hypopnea, hypoxemia, near-infrared spectroscopy, optical pathlength, oxygenation, severity, sleep disorder, spectroscopy, tissue, Adult, Airway obstruction, Apnea hypopnea index, Arterial oxygen saturation, Article, Blood oxygen tension, Blood-flow, Brain blood flow, Brain cortex, Cerebral hemodynamics, Controlled study, Diffuse correlation spectroscopy, Disease severity, Female, Frequency, Frontal lobe, Heart rate, Hemodynamics, Hemoglobin, Hemoglobin determination, Human, Humans, Major clinical study, Male, Near infrared spectroscopy, Near-infrared spectroscopy, Obstructive sleep apnea, Oxygen, Periodicity, Polysomnography, Sleep apnea syndromes, Sleep apnea, obstructive, Sleep disorder, Spectroscopy, near-infrared

Praktiknjo, M., Monteiro, S., Grandt, J., Kimer, N., Madsen, J. L., Werge, M. P., William, P., Brol, M. J., Turco, L., Schierwagen, R., Chang, J., Klein, S., Uschner, F. E., Welsch, C., Moreau, R., Schepis, F., Bendtsen, F., Gluud, L. L., Møller, S., Trebicka, J., (2020). Cardiodynamic state is associated with systemic inflammation and fatal acute-on-chronic liver failure Liver International 40, (6), 1457-1466

Background & Aims: Acute-on-chronic liver failure (ACLF) is characterized by high short-term mortality and systemic inflammation (SI). Recently, different cardiodynamic states were shown to independently predict outcomes in cirrhosis. The relationship between cardiodynamic states, SI, and portal hypertension and their impact on ACLF development remains unclear. The aim of this study was therefore to evaluate the interplay of cardiodynamic state and SI on fatal ACLF development in cirrhosis. Results: At inclusion, hemodynamic measures including cardiac index (CI) and hepatic venous pressure gradient of 208 patients were measured. Patients were followed prospectively for fatal ACLF development (primary endpoint). SI was assessed by proinflammatory markers such as interleukins (ILs) 6 and 8 and soluble IL-33 receptor (sIL-33R). Patients were divided according to CI (<3.2; 3.2-4.2; >4.2 L/min/m2) in hypo- (n = 84), normo- (n = 69) and hyperdynamic group (n = 55). After a median follow-up of 3 years, the highest risk of fatal ACLF was seen in hyperdynamic (35%) and hypodynamic patients (25%) compared with normodynamic (14%) (P = .011). Hyperdynamic patients showed the highest rate of SI. The detectable level of IL-6 was an independent predictor of fatal ACLF development. Conclusions: Cirrhotic patients with hyperdynamic and hypodynamic circulation have a higher risk of fatal ACLF. Therefore, the cardiodynamic state is strongly associated with SI, which is an independent predictor of development of fatal ACLF.

JTD Keywords: Acute-on-chronic liver failure, Circulation, Cirrhosis, Hemodynamic, Inflammation

Cagido, Viviane Ramos, Zin, Walter Araujo, Ramirez, Jose, Navajas, Daniel, Farre, Ramon, (2011). Alternating ventilation in a rat model of increased abdominal pressure Respiratory Physiology & Neurobiology , 175, (3), 310-315

During alternating ventilation (AV) one lung is inflating while the other is deflating. Considering the possible respiratory and hemodynamic advantages of AV, we investigated its effects during increased intra-abdominal pressure (IAP = 10 mmHg). In Sprague-Dawley rats (n = 6, 270–375 g) the main bronchi were independently cannulated, and respiratory mechanics determined while animals underwent different ventilatory patterns: synchronic ventilation without increased IAP (SV-0), elevated IAP during SV (SV-10), and AV with elevated IAP (AV-10). Thirty-three other animals (SV-0, n = 10; SV-10, n = 11 and AV-10, n = 12) were ventilated during 3 h. Mean arterial pressure (MAP), and lung histology were assessed. Increased IAP resulted in significantly higher elastances (p < 0.001), being AV-10 lower than SV-10 (p < 0.020). SV-10 showed higher central venous pressure (p < 0.003) than S-0; no change was observed in AV-10. Wet/dry lung weight ratio was lower in AV-10 than SV-10 (p = 0.009). Application of AV reduced hemodynamic and lung impairments induced by increased IAP during SV.

JTD Keywords: Alternating ventilation, Respiratory mechanics, Intra-abdominal pressure, Hemodynamic, Mechanical ventilation, Animal model