by Keyword: Kidney organoid
Safi W, Marco A, Moya D, Prado P, Garreta E, Montserrat N, (2022). Assessing kidney development and disease using kidney organoids and CRISPR engineering Frontiers In Cell And Developmental Biology 10, 948395
The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.Copyright © 2022 Safi, Marco, Moya, Prado, Garreta and Montserrat.
JTD Keywords: crispr, directed differentiation, epithelial-cells, expression, kidney engineering, kidney organoids, model, mouse, nephrogenesis, nephron number, podocytes, progenitor, Crispr, Kidney engineering, Kidney organoids, Nephrogenesis, Pluripotent stem cells, Pluripotent stem-cells
Garreta E, Prado P, Stanifer ML, Monteil V, Marco A, Ullate-Agote A, Moya-Rull D, Vilas-Zornoza A, Tarantino C, Romero JP, Jonsson G, Oria R, Leopoldi A, Hagelkruys A, Gallo M, González F, Domingo-Pedrol P, Gavaldà A, Del Pozo CH, Hasan Ali O, Ventura-Aguiar P, Campistol JM, Prosper F, Mirazimi A, Boulant S, Penninger JM, Montserrat N, (2022). A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells Cell Metabolism 34, 857-873
It is not well understood why diabetic individuals are more prone to develop severe COVID-19. To this, we here established a human kidney organoid model promoting early hallmarks of diabetic kidney disease development. Upon SARS-CoV-2 infection, diabetic-like kidney organoids exhibited higher viral loads compared with their control counterparts. Genetic deletion of the angiotensin-converting enzyme 2 (ACE2) in kidney organoids under control or diabetic-like conditions prevented viral detection. Moreover, cells isolated from kidney biopsies from diabetic patients exhibited altered mitochondrial respiration and enhanced glycolysis, resulting in higher SARS-CoV-2 infections compared with non-diabetic cells. Conversely, the exposure of patient cells to dichloroacetate (DCA), an inhibitor of aerobic glycolysis, resulted in reduced SARS-CoV-2 infections. Our results provide insights into the identification of diabetic-induced metabolic programming in the kidney as a critical event increasing SARS-CoV-2 infection susceptibility, opening the door to the identification of new interventions in COVID-19 pathogenesis targeting energy metabolism.Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
JTD Keywords: complications, coronavirus, cultured-cells, disease, distal tubule, mouse, protein, reveals, spike, Ace2, Angiotensin-converting enzyme 2, Angiotensin-converting enzyme-2, Covid-19, Diabetes 2, Human kidney organoids, Sars-cov-2
Selfa IL, Gallo M, Montserrat N, Garreta E, (2021). Directed Differentiation of Human Pluripotent Stem Cells for the Generation of High-Order Kidney Organoids Methods In Molecular Biology 2258, 171-192
© 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature. Our understanding in the inherent properties of human pluripotent stem cells (hPSCs) have made possible the development of differentiation procedures to generate three-dimensional tissue-like cultures, so-called organoids. Here we detail a stepwise methodology to generate kidney organoids from hPSCs. This is achieved through direct differentiation of hPSCs in two-dimensional monolayer culture toward the posterior primitive streak fate, followed by induction of intermediate mesoderm-committed cells, which are further aggregated and cultured in three-dimensions to generate kidney organoids containing segmented nephron-like structures in a process that lasts 20 days. We also provide a concise description on how to assess renal commitment during the time course of kidney organoid generation. This includes the use of flow cytometry and immunocytochemistry analyses for the detection of specific renal differentiation markers.
JTD Keywords: 2d monolayer, 3d organotypic culture, differentiation, flow cytometry, human pluripotent stem cells, immunocytochemistry, intermediate mesoderm, kidney organoid, nephron progenitor cells, nephrons, primitive streak, 2d monolayer, 3d organotypic culture, Differentiation, Flow cytometry, Human pluripotent stem cells, Immunocytochemistry, Intermediate mesoderm, Kidney organoid, Nephron progenitor cells, Nephrons, Primitive streak, Tissue
Garreta, E, Nauryzgaliyeva, Z, Montserrat, N, (2021). Human induced pluripotent stem cell-derived kidney organoids toward clinical implementations Curr Opin Biomed Eng 20,
The generation of kidney organoids from human pluripotent stem cells (hPSCs) has represented a relevant scientific achievement in the organoid field. Importantly, hPSC-derived kidney organoids contain multiple nephron-like structures that exhibit some renal functional characteristics and have the capacity to respond to nephrotoxic agents. In this review, we first discuss how bioengineering approaches can help overcome current kidney organoid challenges. Next, we focus on recent works exploiting kidney organoids for drug screening and disease modeling applications. Finally, we provide a state of the art on current research toward the potential application of kidney organoids and renal cells derived from hPSCs for future renal replacement therapies.
JTD Keywords: Bioengineering, Converting enzyme-ii, Crispr/cas9 gene editing, Disease, Disease modeling, Extracellular-matrix, Generation, Human pluripotent stem cells, Kidney organoids, Kidney regeneration, Model, Mouse, Reveals, Scaffold, Transplantation