by Keyword: Morphogenesis
Cicconofri, Giancarlo, Blanco, Pau, Vilanova, Guillermo, Saez, Pablo, Arroyo, Marino, (2024). Active interfacial degradation/deposition of an elastic matrix by a fluid inclusion: Theory and pattern formation Journal Of The Mechanics And Physics Of Solids 191, 105773
During collective invasion in 3D, cohesive cellular tissues migrate within a fibrous extracellular matrix (ECM). This process requires significant remodeling of the ECM by cells, notably proteolysis at the cell-ECM interface by specialized molecules. Motivated by this problem, we develop a theoretical framework to study the dynamics of a fluid inclusion (modeling the cellular tissue) embedded in an elastic matrix (the ECM), which undergoes surface degradation/deposition. To account for the active nature of this process, we develop a continuum theory based on irreversible thermodynamics, leading to a kinetic relation for the degradation front that locally resembles the force-velocity relation of a molecular motor. We further study the effect of mechanotransduction on the stability of the cell-ECM interface, finding a variety of self- organized dynamical patterns of collective invasion. Our work identifies ECM proteolysis as an active process possibly driving the self-organization of cellular tissues.
JTD Keywords: Accretion, Accretion and erosion, Active matter, Cell-migration, Collective invasion, Growth, Insight, Irreversible thermodynamics, Mechanics, Model, Morphogenesis, Moving non-material interfaces, Pattern formatio, Proteolysis, Surface, Surface growth
Marín-Llauradó, A, Kale, S, Ouzeri, A, Golde, T, Sunyer, R, Torres-Sánchez, A, Latorre, E, Gómez-González, M, Roca-Cusachs, P, Arroyo, M, Trepat, X, (2023). Mapping mechanical stress in curved epithelia of designed size and shape Nature Communications 14, 4014
The function of organs such as lungs, kidneys and mammary glands relies on the three-dimensional geometry of their epithelium. To adopt shapes such as spheres, tubes and ellipsoids, epithelia generate mechanical stresses that are generally unknown. Here we engineer curved epithelial monolayers of controlled size and shape and map their state of stress. We design pressurized epithelia with circular, rectangular and ellipsoidal footprints. We develop a computational method, called curved monolayer stress microscopy, to map the stress tensor in these epithelia. This method establishes a correspondence between epithelial shape and mechanical stress without assumptions of material properties. In epithelia with spherical geometry we show that stress weakly increases with areal strain in a size-independent manner. In epithelia with rectangular and ellipsoidal cross-section we find pronounced stress anisotropies that impact cell alignment. Our approach enables a systematic study of how geometry and stress influence epithelial fate and function in three-dimensions.© 2023. The Author(s).
JTD Keywords: cell, forces, morphogenesis, tension, E-cadherin, Epithelial cells, Epithelium, Microscopy, Stress, mechanical
Ferre-Torres, J, Noguera-Monteagudo, A, Lopez-Canosa, A, Romero-Arias, JR, Barrio, R, Castaño, O, Hernandez-Machado, A, (2023). Modelling of chemotactic sprouting endothelial cells through an extracellular matrix Frontiers In Bioengineering And Biotechnology 11, 1145550
Sprouting angiogenesis is a core biological process critical to vascular development. Its accurate simulation, relevant to multiple facets of human health, is of broad, interdisciplinary appeal. This study presents an in-silico model replicating a microfluidic assay where endothelial cells sprout into a biomimetic extracellular matrix, specifically, a large-pore, low-concentration fibrin-based porous hydrogel, influenced by chemotactic factors. We introduce a novel approach by incorporating the extracellular matrix and chemotactic factor effects into a unified term using a single parameter, primarily focusing on modelling sprouting dynamics and morphology. This continuous model naturally describes chemotactic-induced sprouting with no need for additional rules. In addition, we extended our base model to account for matrix sensing and degradation, crucial aspects of angiogenesis. We validate our model via a hybrid in-silico experimental method, comparing the model predictions with experimental results derived from the microfluidic setup. Our results underscore the intricate relationship between the extracellular matrix structure and angiogenic sprouting, proposing a promising method for predicting the influence of the extracellular matrix on angiogenesis.Copyright © 2023 Ferre-Torres, Noguera-Monteagudo, Lopez-Canosa, Romero-Arias, Barrio, Castaño and Hernandez-Machado.
JTD Keywords: angiogenesis, biomimmetic, chemotaxis, endothelial cells, filopodia, growth, in silico model, mathematical models, mechanisms, metalloproteinase, migration, morphogenesis, phase field, pore-size, simulation, Angiogenesis, Biomimmetic, Chemotaxis, Endothelial cells, Extracellular matrix, In silico model, Mathematical models, Phase field, Tip cells
Schamberger, B, Ziege, R, Anselme, K, Ben Amar, M, Bykowski, M, Castro, APG, Cipitria, A, Coles, RA, Dimova, R, Eder, M, Ehrig, S, Escudero, LM, Evans, ME, Fernandes, PR, Fratzl, P, Geris, L, Gierlinger, N, Hannezo, E, Iglic, A, Kirkensgaard, JJK, Kollmannsberger, P, Kowalewska, L, Kurniawan, NA, Papantoniou, I, Pieuchot, L, Pires, THV, Renner, LD, Sageman-Furnas, AO, Schroder-Turk, GE, Sengupta, A, Sharma, VR, Tagua, A, Tomba, C, Trepat, X, Waters, SL, Yeo, EF, Roschger, A, Bidan, CM, Dunlop, JWC, (2023). Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales Advanced Materials 35, 2206110
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
JTD Keywords: biological systems, butterfly wing scales, cubic membranes, extracellular-matrix, geometry, mechanotransduction, membrane curvature, morphogenesis, neotissue growth, pattern-formation, soft materials, surface curvature, tissue-growth, Biological systems, Collective cell-migration, Surface curvature
Matejcic, M, Trepat, X, (2023). Mechanobiological approaches to synthetic morphogenesis: learning by building Trends In Cell Biology 33, 95-111
Tissue morphogenesis occurs in a complex physicochemical microenvironment with limited experimental accessibility. This often prevents a clear identification of the processes that govern the formation of a given functional shape. By applying state-of-the-art methods to minimal tissue systems, synthetic morphogenesis aims to engineer the discrete events that are necessary and sufficient to build specific tissue shapes. Here, we review recent advances in synthetic morphogenesis, highlighting how a combination of microfabrication and mechanobiology is fostering our understanding of how tissues are built.Copyright © 2022 Elsevier Ltd. All rights reserved.
JTD Keywords: cell dynamics, elongation, endothelial-cells, epithelium, growth, lumen, mechanical tension, patterns, self-organization, synthetic morphogenesis, tissue folding, tissue mechanics, topological defects, Cell dynamics, Humans, Morphogenesis, Stem-cells, Synthetic morphogenesis, Tissue folding, Tissue mechanics, Tissue shape
Elosegui-Artola, A, Gupta, A, Najibi, AJ, Seo, BR, Garry, R, Tringides, CM, de Lazaro, I, Darnell, M, Guo, W, Zhou, Q, Weitze, DA, Mahadevan, L, Mooney, DJ, (2023). Matrix viscoelasticity controls spatiotemporal tissue organization Nature Materials 22, 117-+
Biomolecular and physical cues of the extracellular matrix environment regulate collective cell dynamics and tissue patterning. Nonetheless, how the viscoelastic properties of the matrix regulate collective cell spatial and temporal organization is not fully understood. Here we show that the passive viscoelastic properties of the matrix encapsulating a spheroidal tissue of breast epithelial cells guide tissue proliferation in space and in time. Matrix viscoelasticity prompts symmetry breaking of the spheroid, leading to the formation of invading finger-like protrusions, YAP nuclear translocation and epithelial-to-mesenchymal transition both in vitro and in vivo in a Arp2/3-complex-dependent manner. Computational modelling of these observations allows us to establish a phase diagram relating morphological stability with matrix viscoelasticity, tissue viscosity, cell motility and cell division rate, which is experimentally validated by biochemical assays and in vitro experiments with an intestinal organoid. Altogether, this work highlights the role of stress relaxation mechanisms in tissue growth dynamics, a fundamental process in morphogenesis and oncogenesis.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
JTD Keywords: in-vitro, migration, morphogenesis, stiffness, Intestinal stem-cell
Karkali, K, Jorba, I, Navajas, D, Martin-Blanco, E, (2022). Measuring ventral nerve cord stiffness in live flat- dissected Drosophila embryos by atomic force microscopy Star Protocols 3, 101901
Drosophila is an amenable system for addressing the mechanics of morphogenesis. We describe a workflow for characterizing the mechanical properties of its ventral nerve cord (VNC), at different developmental stages, in live, flat dissected embryos employing atomic force microscopy (AFM). AFM is performed with spherical probes, and stiffness (Young's modulus) is calculated by fitting force curves with Hertz's contact model. For complete details on the use and execution of this protocol, please refer to Karkali et al. (2022).
JTD Keywords: atomic force microscopy (afm), developmental biology, model organisms, Animals, Atomic force microscopy, Atomic force microscopy (afm), Biology, Developmental biology, Drosophila, Elastic modulus, Microscopy, atomic force, Model organisms, Morphogenesis, Neurociencia, Neuroscience
Hino, N, Matsuda, K, Jikko, Y, Maryu, G, Sakai, K, Imamura, R, Tsukiji, S, Aoki, K, Terai, K, Hirashima, T, Trepat, X, Matsuda, M, (2022). A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration Developmental Cell 57, 2290-2304
Upon the initiation of collective cell migration, the cells at the free edge are specified as leader cells; however, the mechanism underlying the leader cell specification remains elusive. Here, we show that lamellipodial extension after the release from mechanical confinement causes sustained extracellular signal-regulated kinase (ERK) activation and underlies the leader cell specification. Live-imaging of Madin-Darby canine kidney (MDCK) cells and mouse epidermis through the use of Förster resonance energy transfer (FRET)-based biosensors showed that leader cells exhibit sustained ERK activation in a hepatocyte growth factor (HGF)-dependent manner. Meanwhile, follower cells exhibit oscillatory ERK activation waves in an epidermal growth factor (EGF) signaling-dependent manner. Lamellipodial extension at the free edge increases the cellular sensitivity to HGF. The HGF-dependent ERK activation, in turn, promotes lamellipodial extension, thereby forming a positive feedback loop between cell extension and ERK activation and specifying the cells at the free edge as the leader cells. Our findings show that the integration of physical and biochemical cues underlies the leader cell specification during collective cell migration.Copyright © 2022 Elsevier Inc. All rights reserved.
JTD Keywords: activation, c-met, contact inhibition, focal adhesions, heparan-sulfate, mechanical forces, morphogenesis, rho, stress fibers, Collective cell migration, Erk, Feedback regulation, Fret, Growth-factor receptor, Hgf, Lamellipodia, Leader cell specification, Signal transduction, Traction force, Wound healing
Barbacena, P, Dominguez-Cejudo, M, Fonseca, CG, Gómez-González, M, Faure, LM, Zarkada, G, Pena, A, Pezzarossa, A, Ramalho, D, Giarratano, Y, Ouarné, M, Barata, D, Fortunato, IC, Misikova, LH, Mauldin, I, Carvalho, Y, Trepat, X, Roca-Cusachs, P, Eichmann, A, Bernabeu, MO, Franco, CA, (2022). Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retina Developmental Cell 57, 2321-2333
Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
JTD Keywords: activation, angiogenesis, dynamics, flow, forces, image, mechanisms, vinculin, Angiogenesis, Cell polarity, Fluid shear, Mechanobiology, Morphogenesis, Shear stress
Clark, AG, Maitra, A, Jacques, C, Bergert, M, Perez-Gonzalez, C, Simon, A, Lederer, L, Diz-Munoz, A, Trepat, X, Voituriez, R, Vignjevic, DM, (2022). Self-generated gradients steer collective migration on viscoelastic collagen networks Nature Materials 21, 1200-1210
Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.; Cell clusters mechanically reorganize viscoelastic collagen networks, resulting in transient gradients in collagen density, alignment and stiffness that promote spontaneous persistent migration.
JTD Keywords: Cell-migration, Design, Invasion, Limits, Mechanics, Microscopy, Morphogenesis, Motility, Rear, Rigidity
Karkali, K, Tiwari, P, Singh, A, Tlili, S, Jorba, I, Navajas, D, Munoz, JJ, Saunders, TE, Martin-Blanco, E, (2022). Condensation of the Drosophila nerve cord is oscillatory and depends on coordinated mechanical interactions Developmental Cell 57, 867-+
During development, organs reach precise shapes and sizes. Organ morphology is not always obtained through growth; a classic counterexample is the condensation of the nervous system during Drosophila embryogenesis. The mechanics underlying such condensation remain poorly understood. Here, we characterize the condensation of the embryonic ventral nerve cord (VNC) at both subcellular and tissue scales. This analysis reveals that condensation is not a unidirectional continuous process but instead occurs through oscillatory contractions. The VNC mechanical properties spatially and temporally vary, and forces along its longitudinal axis are spatially heterogeneous. We demonstrate that the process of VNC condensation is dependent on the coordinated mechanical activities of neurons and glia. These outcomes are consistent with a viscoelastic model of condensation, which incorporates time delays and effective frictional interactions. In summary, we have defined the progressive mechanics driving VNC condensation, providing insights into how a highly viscous tissue can autonomously change shape and size.
JTD Keywords: actomyosin, central nervous system, drosophila, glia, mechanics, morphogenesis, neuron, ventral nerve cord, Actomyosin, Animals, Central nervous system, Collagen-iv, Contraction, Drosophila, Embryonic development, Forces, Gene, Glia, Glial-cells, Mechanics, Migration, Morphogenesis, Neuroglia, Neuron, Neurons, Quantification, System, Tissue, Ventral nerve cord, Viscolelastic model
Pérez-González, C, Ceada, G, Greco, F, Matejcic, M, Gómez-González, M, Castro, N, Menendez, A, Kale, S, Krndija, D, Clark, AG, Gannavarapu, VR, Alvarez-Varela, A, Roca-Cusachs, P, Batlle, E, Vignjevic, DM, Arroyo, M, Trepat, X, (2021). Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration Nature Cell Biology 23, 745-757
Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are at present unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the extracellular matrix and folds through apical constriction, whereas the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment depends on the extracellular-matrix stiffness and endogenous cellular forces. Computational modelling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium. Perez-Gonzalez et al. explore the mechanical properties of intestinal organoids, and report the existence of distinct mechanical domains and that cells are pulled out of the central crypt along a gradient of increasing tension.
JTD Keywords: Forces, Growth, Gut, Monolayers, Morphogenesis, Reveal, Stem-cells, Tension
Watt, AC, Cejas, P, DeCristo, MJ, Metzger, O, Lam, EYN, Qiu, XT, BrinJones, H, Kesten, N, Coulson, R, Font-Tello, A, Lim, K, Vadhi, R, Daniels, VW, Montero, J, Taing, L, Meyer, CA, Gilan, O, Bell, CC, Korthauer, KD, Giambartolomei, C, Pasaniuc, B, Seo, JH, Freedman, ML, Ma, CT, Ellis, MJ, Krop, I, Winer, E, Letai, A, Brown, M, Dawson, MA, Long, HW, Zhao, JJ, Goel, S, (2021). CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity Nature Cancer 2, 34-+
Goel and colleagues show that CDK4/6 inhibition induces global chromatin changes mediated by AP-1 factors, which mediate key biological and clinical effects in breast cancer. Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that are enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several activator protein-1 transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.
JTD Keywords: Abemaciclib, Androgen receptor, Animal experiment, Animal model, Animal tissue, Apoptosis, Article, Breast cancer, C-jun, Cancer cell, Carcinoembryonic antigen related cell adhesion molecule 1, Caspase 3, Cell cycle arrest, Cells, Chromatin, Chromatin immunoprecipitation, Controlled study, Cyclin dependent kinase 4, Cyclin dependent kinase 6, Dna damage, Epidermal growth factor receptor 2, Estrogen receptor, Female, Flow cytometry, Fulvestrant, Hla drb1 antigen, Human, Human cell, Immunoblotting, Immunogenicity, Immunoprecipitation, Interferon, Luciferase assay, Mcf-7 cell line, Mda-mb-231 cell line, Microarray analysis, Morphogenesis, Mouse, Nonhuman, Palbociclib, Protein, Protein expression, Rb, Resistance, Rna polymerase ii, Rna sequence, Selective-inhibition, Senescence, Short tandem repeat, Signal transduction, Tamoxifen, Transcription elongation, Transcription factor, Transcription factor ap 1, Transcriptome, Tumor biopsy, Tumor differentiation, Tumor spheroid, Tumor xenograft, Vinculin, Whole exome sequencing
Alcaraz, J., Otero, J., Jorba, I., Navajas, D., (2018). Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy Seminars in Cell and Developmental Biology 73, 71-81
There is growing recognition that the mechanical interactions between cells and their local extracellular matrix (ECM) are central regulators of tissue development, homeostasis, repair and disease progression. The unique ability of atomic force microscopy (AFM) to probe quantitatively mechanical properties and forces at the nanometer or micrometer scales in all kinds of biological samples has been instrumental in the recent advances in cell and tissue mechanics. In this review we illustrate how AFM has provided important insights on our current understanding of the mechanobiology of cells, ECM and cell-ECM bidirectional interactions, particularly in the context of soft acinar tissues like the mammary gland or pulmonary tissue. AFM measurements have revealed that intrinsic cell micromechanics is cell-type specific, and have underscored the prominent role of β1 integrin/FAK(Y397) signaling and the actomyosin cytoskeleton in the mechanoresponses of both parenchymal and stromal cells. Moreover AFM has unveiled that the micromechanics of the ECM obtained by tissue decellularization is unique for each anatomical compartment, which may support both its specific function and cell differentiation. AFM has also enabled identifying critical mechanoregulatory proteins involved in branching morphogenesis (MMP14) and acinar differentiation (α3β1 integrin), and has clarified the role of altered tissue mechanics and architecture in a variety of pathologic conditions. Critical technical issues of AFM mechanical measurements like tip geometry effects are also discussed.
JTD Keywords: Atomic force microscopy, Beta1 integrin, Elastic modulus, Extracellular matrix, Morphogenesis, Tissue decellularization
Perez-Mockus, Gantas, Mazouni, Khalil, Roca, Vanessa, Corradi, Giulia, Conte, Vito, Schweisguth, François, (2017). Spatial regulation of contractility by Neuralized and Bearded during furrow invagination in Drosophila Nature Communications 8, (1), 1594
Embryo-scale morphogenesis arises from patterned mechanical forces. During Drosophila gastrulation, actomyosin contractility drives apical constriction in ventral cells, leading to furrow formation and mesoderm invagination. It remains unclear whether and how mechanical properties of the ectoderm influence this process. Here, we show that Neuralized (Neur), an E3 ubiquitin ligase active in the mesoderm, regulates collective apical constriction and furrow formation. Conversely, the Bearded (Brd) proteins antagonize maternal Neur and lower medial–apical contractility in the ectoderm: in Brd-mutant embryos, the ventral furrow invaginates properly but rapidly unfolds as medial MyoII levels increase in the ectoderm. Increasing contractility in the ectoderm via activated Rho similarly triggers furrow unfolding whereas decreasing contractility restores furrow invagination in Brd-mutant embryos. Thus, the inhibition of Neur by Brd in the ectoderm differentiates the mechanics of the ectoderm from that of the mesoderm and patterns the activity of MyoII along the dorsal–ventral axis.
JTD Keywords: Drosophila, Gastrulation, Morphogenesis
Hernández-Vega, Amayra, Marsal, María, Pouille, Philippe-Alexandre, Tosi, Sébastien, Colombelli, Julien, Luque, Tomás, Navajas, Daniel, Pagonabarraga, Ignacio, Martín-Blanco, Enrique, (2017). Polarized cortical tension drives zebrafish epiboly movements EMBO Journal 36, (1), 25-41
The principles underlying the biomechanics of morphogenesis are largely unknown. Epiboly is an essential embryonic event in which three tissues coordinate to direct the expansion of the blastoderm. How and where forces are generated during epiboly, and how these are globally coupled remains elusive. Here we developed a method, hydrodynamic regression (HR), to infer 3D pressure fields, mechanical power, and cortical surface tension profiles. HR is based on velocity measurements retrieved from 2D+T microscopy and their hydrodynamic modeling. We applied HR to identify biomechanically active structures and changes in cortex local tension during epiboly in zebrafish. Based on our results, we propose a novel physical description for epiboly, where tissue movements are directed by a polarized gradient of cortical tension. We found that this gradient relies on local contractile forces at the cortex, differences in elastic properties between cortex components and the passive transmission of forces within the yolk cell. All in all, our work identifies a novel way to physically regulate concerted cellular movements that might be instrumental for the mechanical control of many morphogenetic processes.
JTD Keywords: Epiboly, Hydrodynamics, Mechanics, Morphogenesis, Zebrafish
Trepat, X., Fredberg, J. J., (2011). Plithotaxis and emergent dynamics in collective cellular migration Trends in Cell Biology 21, (11), 638-646
For a monolayer sheet to migrate cohesively, it has long been suspected that each constituent cell must exert physical forces not only upon its extracellular matrix but also upon neighboring cells. The first comprehensive maps of these distinct force components reveal an unexpected physical picture. Rather than showing smooth and systematic variation within the monolayer, the distribution of physical forces is dominated by heterogeneity, both in space and in time, which emerges spontaneously, propagates over great distances, and cooperates over the span of many cell bodies. To explain the severe ruggedness of this force landscape and its role in collective cell guidance, the well known mechanisms of chemotaxis, durotaxis, haptotaxis are clearly insufficient. In a broad range of epithelial and endothelial cell sheets, collective cell migration is governed instead by a newly discovered emergent mechanism of innately collective cell guidance - plithotaxis.
JTD Keywords: Positional information, Drosophila embryo, Sheet migration, Dpp gradient, Cells, Force, Morphogenesis, Transition, Identification, Proliferation
Angelini, T. E., Hannezo, E., Trepat, X., Fredberg, J. J., Weitz, D. A., (2010). Cell migration driven by cooperative substrate deformation patterns Physical Review Letters 104, (16), 168104
Most eukaryotic cells sense and respond to the mechanical properties of their surroundings. This can strongly influence their collective behavior in embryonic development, tissue function, and wound healing. We use a deformable substrate to measure collective behavior in cell motion due to substrate mediated cell-cell interactions. We quantify spatial and temporal correlations in migration velocity and substrate deformation, and show that cooperative cell-driven patterns of substrate deformation mediate long-distance mechanical coupling between cells and control collective cell migration.
JTD Keywords: Movement, Morphogenesis, Stiffness, Forces, Flocks
Trepat, X., Wasserman, M. R., Angelini, T. E., Millet, E., Weitz, D. A., Butler, J. P., Fredberg, J. J., (2009). Physical forces during collective cell migration Nature Physics 5, (6), 426-430
Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions(1-3), and to drive these motions cells exert traction forces on their surroundings(4). Current understanding emphasizes that these traction forces arise mainly in 'leader cells' at the front edge of the advancing cell sheet(5-9). Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails(10-12). Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.
JTD Keywords: Focal adhesions, Granular matter, Bead packs, Morphogenesis, Sheets, Actin, Fluctuations, Fibroblasts, Microscopy, Diversity