by Keyword: Magnetic resonance
Eills, James, Picazo-Frutos, Roman, Bondar, Oksana, Cavallari, Eleonora, Carrera, Carla, Barker, Sylwia J, Utz, Marcel, Herrero-Gomez, Alba, Marco-Rius, Irene, Tayler, Michael C D, Aime, Silvio, Reineri, Francesca, Budker, Dmitry, Blanchard, John W, (2023). Enzymatic Reactions Observed with Zero- and Low-Field Nuclear Magnetic Resonance Analytical Chemistry 95, 17997-18005
We demonstrate that enzyme-catalyzed reactions can be observed in zero- and low-field NMR experiments by combining recent advances in parahydrogen-based hyperpolarization methods with state-of-the-art magnetometry. Specifically, we investigated two model biological processes: the conversion of fumarate into malate, which is used in vivo as a marker of cell necrosis, and the conversion of pyruvate into lactate, which is the most widely studied metabolic process in hyperpolarization-enhanced imaging. In addition to this, we constructed a microfluidic zero-field NMR setup to perform experiments on microliter-scale samples of [1-C-13]-fumarate in a lab-on-a-chip device. Zero- to ultralow-field (ZULF) NMR has two key advantages over high-field NMR: the signals can pass through conductive materials (e.g., metals), and line broadening from sample heterogeneity is negligible. To date, the use of ZULF NMR for process monitoring has been limited to studying hydrogenation reactions. In this work, we demonstrate this emerging analytical technique for more general reaction monitoring and compare zero- vs low-field detection.
JTD Keywords: Fumarates, Hydrogenation, Magnetic resonance imaging, Magnetic resonance spectroscopy, Nmr j-spectroscopy, Pyruvic acid
Sauer, F, Grosser, S, Shahryari, M, Hayn, A, Guo, J, Braun, J, Briest, S, Wolf, B, Aktas, B, Horn, LC, Sack, I, Käs, JA, (2023). Changes in Tissue Fluidity Predict Tumor Aggressiveness In Vivo Advanced Science 10, e2303523
Cancer progression is caused by genetic changes and associated with various alterations in cell properties, which also affect a tumor's mechanical state. While an increased stiffness has been well known for long for solid tumors, it has limited prognostic power. It is hypothesized that cancer progression is accompanied by tissue fluidization, where portions of the tissue can change position across different length scales. Supported by tabletop magnetic resonance elastography (MRE) on stroma mimicking collagen gels and microscopic analysis of live cells inside patient derived tumor explants, an overview is provided of how cancer associated mechanisms, including cellular unjamming, proliferation, microenvironment composition, and remodeling can alter a tissue's fluidity and stiffness. In vivo, state-of-the-art multifrequency MRE can distinguish tumors from their surrounding host tissue by their rheological fingerprints. Most importantly, a meta-analysis on the currently available clinical studies is conducted and universal trends are identified. The results and conclusions are condensed into a gedankenexperiment about how a tumor can grow and eventually metastasize into its environment from a physics perspective to deduce corresponding mechanical properties. Based on stiffness, fluidity, spatial heterogeneity, and texture of the tumor front a roadmap for a prognosis of a tumor's aggressiveness and metastatic potential is presented.© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
JTD Keywords: brain, cancer, cells, collective migration, elastic energy, elastography, in vivo magnetic resonance elastography, invasion, medical imaging, solid stress, tissue fluidity, tumor mechanics, viscoelastic properties, Cancer, Collagen, Extracellular-matrix, Humans, In vivo magnetic resonance elastography, Medical imaging, Neoplasms, Prognosis, Tissue fluidity, Tumor mechanics, Tumor microenvironment
Schmidt, AB, Eills, J, Dagys, L, Gierse, M, Bock, M, Lucas, S, Bock, M, Schwartz, I, Zaitsev, M, Chekmenev, EY, Knecht, S, (2023). Over 20% Carbon-13 Polarization of Perdeuterated Pyruvate Using Reversible Exchange with Parahydrogen and Spin-Lock Induced Crossing at 50 μT Journal Of Physical Chemistry Letters 14, 5305-5309
Carbon-13 hyperpolarized pyruvate is about to become the next-generation contrast agent for molecular magnetic resonance imaging of cancer and other diseases. Here, efficient and rapid pyruvate hyperpolarization is achieved via signal amplification by reversible exchange (SABRE) with parahydrogen through synergistic use of substrate deuteration, alternating, and static microtesla magnetic fields. Up to 22 and 6% long-lasting 13C polarization (T1 = 3.7 ± 0.25 and 1.7 ± 0.1 min) is demonstrated for the C1 and C2 nuclear sites, respectively. The remarkable polarization levels become possible as a result of favorable relaxation dynamics at the microtesla fields. The ultralong polarization lifetimes will be conducive to yielding high polarization after purification, quality assurance, and injection of the hyperpolarized molecular imaging probes. These results pave the way to future in vivo translation of carbon-13 hyperpolarized molecular imaging probes prepared by this approach.
JTD Keywords: hydrogen, nmr, Carbon isotopes, Carbon-13, Magnetic resonance imaging, Magnetic resonance spectroscopy, Pyruvic acid, Sabre
Madrid-Gambin, F, Oller, S, Marco, S, Pozo, OJ, Andres-Lacueva, C, Llorach, R, (2023). Quantitative plasma profiling by 1H NMR-based metabolomics: impact of sample treatment Frontiers In Molecular Biosciences 10, 1125582
Introduction: There is evidence that sample treatment of blood-based biosamples may affect integral signals in nuclear magnetic resonance-based metabolomics. The presence of macromolecules in plasma/serum samples makes investigating low-molecular-weight metabolites challenging. It is particularly relevant in the targeted approach, in which absolute concentrations of selected metabolites are often quantified based on the area of integral signals. Since there are a few treatments of plasma/serum samples for quantitative analysis without a universally accepted method, this topic remains of interest for future research. Methods: In this work, targeted metabolomic profiling of 43 metabolites was performed on pooled plasma to compare four methodologies consisting of Carr-Purcell-Meiboom-Gill (CPMG) editing, ultrafiltration, protein precipitation with methanol, and glycerophospholipid solid-phase extraction (g-SPE) for phospholipid removal; prior to NMR metabolomics analysis. The effect of the sample treatments on the metabolite concentrations was evaluated using a permutation test of multiclass and pairwise Fisher scores. Results: Results showed that methanol precipitation and ultrafiltration had a higher number of metabolites with coefficient of variation (CV) values above 20%. G-SPE and CPMG editing demonstrated better precision for most of the metabolites analyzed. However, differential quantification performance between procedures were metabolite-dependent. For example, pairwise comparisons showed that methanol precipitation and CPMG editing were suitable for quantifying citrate, while g-SPE showed better results for 2-hydroxybutyrate and tryptophan. Discussion: There are alterations in the absolute concentration of various metabolites that are dependent on the procedure. Considering these alterations is essential before proceeding with the quantification of treatment-sensitive metabolites in biological samples for improving biomarker discovery and biological interpretations. The study demonstrated that g-SPE and CPMG editing are effective methods for removing proteins and phospholipids from plasma samples for quantitative NMR analysis of metabolites. However, careful consideration should be given to the specific metabolites of interest and their susceptibility to the sample treatment procedures. These findings contribute to the development of optimized sample preparation protocols for metabolomics studies using NMR spectroscopy.Copyright © 2023 Madrid-Gambin, Oller, Marco, Pozo, Andres-Lacueva and Llorach.
JTD Keywords: binding, h-1-nmr spectroscopy, human serum, lactate, metabolites, nuclear magnetic resonance, plasma, protein, quantification, quantitative analysis, sample treatment, Metabolomics, Nuclear magnetic resonance, Nuclear-magnetic-resonance, Plasma, Quantification, Quantitative analysis, Sample treatment
Gierse, M, Nagel, L, Keim, M, Lucas, S, Speidel, T, Lobmeyer, T, Winter, G, Josten, F, Karaali, S, Fellermann, M, Scheuer, J, Müller, C, van Heijster, F, Skinner, J, Löffler, J, Parker, A, Handwerker, J, Marshall, A, Salhov, A, El-Kassem, B, Vassiliou, C, Blanchard, JW, Picazo-Frutos, R, Eills, J, Barth, H, Jelezko, F, Rasche, V, Schilling, F, Schwartz, I, Knecht, S, (2023). Parahydrogen-Polarized Fumarate for Preclinical in Vivo Metabolic Magnetic Resonance Imaging Journal Of The American Chemical Society 145, 5960-5969
We present a versatile method for the preparation of hyperpolarized [1-13C]fumarate as a contrast agent for preclinical in vivo MRI, using parahydrogen-induced polarization (PHIP). To benchmark this process, we compared a prototype PHIP polarizer to a state-of-the-art dissolution dynamic nuclear polarization (d-DNP) system. We found comparable polarization, volume, and concentration levels of the prepared solutions, while the preparation effort is significantly lower for the PHIP process, which can provide a preclinical dose every 10 min, opposed to around 90 min for d-DNP systems. With our approach, a 100 mM [1-13C]-fumarate solution of volumes up to 3 mL with 13-20% 13C-hyperpolarization after purification can be produced. The purified solution has a physiological pH, while the catalyst, the reaction side products, and the precursor material concentrations are reduced to nontoxic levels, as confirmed in a panel of cytotoxicity studies. The in vivo usage of the hyperpolarized fumarate as a perfusion agent in healthy mice and the metabolic conversion of fumarate to malate in tumor-bearing mice developing regions with necrotic cell death is demonstrated. Furthermore, we present a one-step synthesis to produce the 13C-labeled precursor for the hydrogenation reaction with high yield, starting from 13CO2 as a cost-effective source for 13C-labeled compounds.
JTD Keywords: Animals, Contrast media, Fumarates, Hydrogenation, Magnetic resonance imaging, Magnetic resonance spectroscopy, Mice, Para-hydrogen
Kostas Mouloudakis, Sven Bodenstedt, Marc Azagra, Morgan W. Mitchell, Irene Marco-Rius, and Michael C. D. Tayler, (2023). Real-Time Polarimetry of Hyperpolarized 13C Nuclear Spins Using an Atomic Magnetometer Journal Of Physical Chemistry Letters 14, 1192-1197
We introduce a method for nondestructive quantification of nuclear spin polarization, of relevance to hyperpolarized spin tracers widely used in magnetic resonance from spectroscopy to in vivo imaging. In a bias field of around 30 nT we use a high-sensitivity miniaturized 87Rb-vapor magnetometer to measure the field generated by the sample, as it is driven by a windowed dynamical decoupling pulse sequence that both maximizes the nuclear spin lifetime and modulates the polarization for easy detection. We demonstrate the procedure applied to a 0.08 M hyperpolarized [1-13C]-pyruvate solution produced by dissolution dynamic nuclear polarization, measuring polarization repeatedly during natural decay at Earth's field. Application to real-time and continuous quality monitoring of hyperpolarized substances is discussed.
JTD Keywords: performance, polarization, Atomic magnetometers, Bias field, High sensitivity, Hyperpolarized, In-vivo imaging, Magnetic resonance, Magnetic-resonance, Magnetic-resonance,polarizatio, Magnetic-resonance,polarization,performanc, Magnetometers, Non destructive, Nuclear spins, Nuclear-spin polarization, Performance, Polarization, Rb vapors, Real- time, Spin dynamics, Spin polarization
dos Santos, FP, Verschure, PFMJ, (2022). Excitatory-Inhibitory Homeostasis and Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex Frontiers In Systems Neuroscience 15, 806544
Maintaining a balance between excitatory and inhibitory activity is an essential feature of neural networks of the neocortex. In the face of perturbations in the levels of excitation to cortical neurons, synapses adjust to maintain excitatory-inhibitory (EI) balance. In this review, we summarize research on this EI homeostasis in the neocortex, using stroke as our case study, and in particular the loss of excitation to distant cortical regions after focal lesions. Widespread changes following a localized lesion, a phenomenon known as diaschisis, are not only related to excitability, but also observed with respect to functional connectivity. Here, we highlight the main findings regarding the evolution of excitability and functional cortical networks during the process of post-stroke recovery, and how both are related to functional recovery. We show that cortical reorganization at a global scale can be explained from the perspective of EI homeostasis. Indeed, recovery of functional networks is paralleled by increases in excitability across the cortex. These adaptive changes likely result from plasticity mechanisms such as synaptic scaling and are linked to EI homeostasis, providing a possible target for future therapeutic strategies in the process of rehabilitation. In addition, we address the difficulty of simultaneously studying these multiscale processes by presenting recent advances in large-scale modeling of the human cortex in the contexts of stroke and EI homeostasis, suggesting computational modeling as a powerful tool to tie the meso- and macro-scale processes of recovery in stroke patients. Copyright © 2022 Páscoa dos Santos and Verschure.
JTD Keywords: balanced excitation, canonical microcircuit, cerebral-cortex, cortical excitability, cortical reorganization, diaschisis, excitability, excitatory-inhibitory balance, functional networks, homeostatic plasticity, ischemic-stroke, neuronal avalanches, photothrombotic lesions, state functional connectivity, whole-brain models, Algorithm, Biological marker, Brain, Brain cell, Brain cortex, Brain function, Brain radiography, Cerebrovascular accident, Cortical reorganization, Diaschisis, Down regulation, Excitability, Excitatory-inhibitory balance, Fluorine magnetic resonance imaging, Functional networks, Homeostasis, Homeostatic plasticity, Human, Motor dysfunction, Neuromodulation, Plasticity, Pyramidal nerve cell, Review, Simulation, Stroke, Stroke patient, Theta-burst stimulation, Visual cortex
Faron, A., Pieper, C. C., Schmeel, F. C., Sprinkart, A. M., Kuetting, D. L. R., Fimmers, R., Trebicka, J., Schild, H. H., Meyer, C., Thomas, D., Luetkens, J. A., (2019). Fat-free muscle area measured by magnetic resonance imaging predicts overall survival of patients undergoing radioembolization of colorectal cancer liver metastases European Radiology 29, (9), 4709-4717
Objectives: To investigate the clinical potential of fat-free muscle area (FFMA) to predict outcome in patients with liver-predominant metastatic colorectal cancer (mCRC) undergoing radioembolization (RE) with 90Yttrium microspheres.
Methods: Patients with mCRC who underwent RE in our center were included in this retrospective study. All patients received liver magnetic resonance imaging including standard T2-weighted images. The total erector spinae muscle area and the intramuscular adipose tissue area were measured at the level of the origin of the superior mesenteric artery and subtracted to calculate FFMA. Cutoff values for definition of low FFMA were 3644 mm2 in men and 2825 mm2 in women. The main outcome was overall survival (OS). For survival analysis, the Kaplan-Meier method and Cox regressions comparing various clinic-oncological parameters which potentially may affect OS were performed.
Results: Seventy-seven patients (28 female, mean age 60 ± 11 years) were analyzed. Mean time between MRI and the following RE was 17 ± 31 days. Median OS after RE was 178 days. Patients with low FFMA had significantly shortened OS compared to patients with high FFMA (median OS: 128 vs. 273 days, p = 0.017). On multivariate Cox regression analysis, OS was best predicted by FFMA (hazard ratio (HR) 2.652; p < 0.001). Baseline bilirubin (HR 1.875; p = 0.030), pattern of tumor manifestation (HR 1.679; p = 0.001), and model of endstage liver disease (MELD) score (HR 1.164; p < 0.001) were also significantly associated with OS.
Conclusions: FFMA was associated with OS in patients receiving RE for treatment of mCRC and might be a new prognostic biomarker for survival prognosis.
JTD Keywords: Brachytherapy, Colorectal cancer, Magnetic resonance imaging, Sarcopenia
Seo, K. D., Kwak, B. K., Sánchez, S., Kim, D. S., (2015). Microfluidic-assisted fabrication of flexible and location traceable organo-motor
IEEE Transactions on Nanobioscience , 14, (3), 298-304
In this paper, we fabricate a flexible and location traceable micromotor, called organo-motor, assisted by microfluidic devices and with high throughput. The organo-motors are composed of organic hydrogel material, poly (ethylene glycol) diacrylate (PEGDA), which can provide the flexibility of their structure. For spatial and temporal traceability of the organo-motors under magnetic resonance imaging (MRI), superparamagnetic iron oxide nanoparticles (SPION; Fe3O4) were incorporated into the PEGDA microhydrogels. Furthermore, a thin layer of platinum (Pt) was deposited onto one side of the SPION-PEGDA microhydrogels providing geometrical asymmetry and catalytic propulsion in aqueous fluids containing hydrogen peroxide solution, H2O2. Furthermore, the motion of the organo-motor was controlled by a small external magnet enabled by the presence of SPION in the motor architecture.
JTD Keywords: Flexible, Hydrogel, Magnetic resonance imaging, Microfluidics, Micromotor, Microparticle, Organo-motor, Poly (ethylene glycol) diacrylate, Self-propulsion, Superparamagnetic iron oxide nanoparticles