DONATE

Publications

by Keyword: Methylcellulose

Molina, BG, Arnau, M, Sánchez, M, Alemán, C, (2024). Controlled dopamine release from cellulose-based conducting hydrogel European Polymer Journal 202, 112635

Very recently, the controlled release of dopamine (DA), a neurotransmitter whose deficiency is associated with Parkinson's disease, has been postulated as a good alternative to the oral administration of levodopa (L-Dopa), a dopamine precursor, to combat the effects of said disease. However, this is still a very little explored field and there are very few carriers that are capable of releasing DA, a small and water-soluble molecule, in an efficient and controlled manner. In this work, we report a carrier based on a conductive hydrogel capable of loading DA and releasing it progressively and efficiently (100 % release) in a period of five days by applying small electrical stimuli (-0.4 V) daily for a short time (1 min). The hydrogel (CMC/PEDOT), which is electrically active, has been prepared from sodium carboxymethylcellulose and poly(3,4-ethylenedioxythiophene) microparticles, using citric acid as a cross-linking agent. Furthermore, the results have shown that when relatively hydrophobic small molecules, such as chloramphenicol, are loaded, the electrostimulated release is significantly less efficient, demonstrating the usefulness of CMC/PEDOT as a carrier for neurotransmitters.

JTD Keywords: Amines, Carboxymethyl cellulose, Carboxymethylcellulose, Conducting hydrogels, Conducting polymers, Controlled release, Crosslinking, Dopamine, Drug-delivery system, Electrostimulation, Hydrogels, Joining, Levodopa, Loading, Molecules, Neurophysiology, Neurotransmitter release, Neurotransmitters release, Oral administration, Parkinson's disease, Parkinsons-disease, Poly(3,4-ethylenedioxythiophene), Release, Sodium, Transport, Water-soluble molecule


Sole-Marti, X, Vilella, T, Labay, C, Tampieri, F, Ginebra, MP, Canal, C, (2022). Thermosensitive hydrogels to deliver reactive species generated by cold atmospheric plasma: a case study with methylcellulose Biomaterials Science 10, 3845-3855

Hydrogels have been recently proposed as suitable materials to generate reactive oxygen and nitrogen species (RONS) upon gas-plasma treatment, and postulated as promising alternatives to conventional cancer therapies. Acting as delivery vehicles that allow a controlled release of RONS to the diseased site, plasma-treated hydrogels can overcome some of the limitations presented by plasma-treated liquids in in vivo therapies. In this work, we optimized the composition of a methylcellulose (MC) hydrogel to confer it with the ability to form a gel at physiological temperatures while remaining in the liquid phase at room temperature to allow gas-plasma treatment with suitable formation of plasma-generated RONS. MC hydrogels demonstrated the capacity for generation, prolonged storage and release of RONS. This release induced cytotoxic effects on the osteosarcoma cancer cell line MG-63, reducing its cell viability in a dose-response manner. These promising results postulate plasma-treated thermosensitive hydrogels as good candidates to provide local anticancer therapies.

JTD Keywords: Case-control studies, Cellulose, Hydrogels, Methylcellulose, Phase-separation, Plasma gases, Reactive oxygen species, Stability, Substituent, Temperature, Thermoreversible gelation