DONATE

Publications

by Keyword: Monomers

Alambiaga-Caravaca, Adrian M, Chou, Yu Fu, Moreno, Daniel, Aparicio, Conrado, Lopez-Castellano, Alicia, Feitosa, Victor Pinheiro, Tezvergil-Mutluay, Arzu, Sauro, Salvatore, (2024). Characterisation of experimental flowable composites containing fluoride-doped calcium phosphates as promising remineralising materials Journal Of Dentistry 143, 104906

Objective: Remineralising composites with antibacterial properties may seal the cavity and prevent secondary caries. This study aimed at developing experimental flowable composites containing different concentrations of fluoride-doped calcium phosphate fillers and evaluating their remineralising and antibacterial properties. Methods: Experimental resin-based composites containing different concentrations (0-20 %) of fluoride-doped calcium phosphate fillers (VS10/VS20) were formulated. The release of calcium (Ca), phosphate (PO) and fluoride (F) ions was assessed for 30 days. Remineralisation properties were evaluated through ATR-FTIR and SEM/EDX after storage in simulated body fluid (SBF). The metabolic activity and viability of Streptococcus gordonii was also evaluated through ATP, CFU and live/dead confocal microscopy. The evaluation of specific monomer elution from the experimental composites was conducted using high-performance liquid chromatography (HPLC). Results: The composites containing VS10 showed the highest release of Ca, those containing VS20 released more F over time (p < 0.05), while there was no significant difference in terms of PO ions release between the groups (p > 0.05). A quick 7-day mineral precipitation was observed in the tested composites containing VS10 or VS20 at 10 %; these materials also showed the greatest antibacterial activity (p < 0.05). Moreover, the tested composites containing VS10 presented the lowest elution of monomers (p < 0.05). Conclusions: Innovative composites were developed with low monomers elution, evident antibacterial activity against S. gordonii and important remineralisation properties due to specific ions release.

JTD Keywords: Antibacterial, Apatite, Apatite, bacterial, caries, demineralization, dentistry, monomers, adhesion, elution, enamel, tissu, Calcium phosphate, Ion-release, Remineralisation, Remineralisation, ion -release, antibacterial, calcium phosphate, resin composite, apatit, Resin composite


Pala, M, El Khannaji, H, Garay-Sarmiento, M, Ronda, JC, Cadiz, V, Galia, M, Percec, V, Rodriguez-Emmenegger, C, Lligadas, G, (2022). A green solvent-to-polymer upgrading approach to water-soluble LCST poly(N-substituted lactamide acrylate)s Green Chemistry 24, 8314-8323

We report a green solvent-to-polymer upgrading transformation of chemicals of the lactic acid portfolio into water-soluble lower critical solution temperature (LCST)-type acrylic polymers. Aqueous Cu(0)-mediated living radical polymerization (SET-LRP) was utilized for the rapid synthesis of N-substituted lactamide-type homo and random acrylic copolymers under mild conditions. A particularly unique aspect of this work is that the water-soluble monomers and the SET-LRP initiator used to produce the corresponding polymers were synthesized from biorenewable and non-toxic solvents, namely natural ethyl lactate and BASF's Agnique (R) AMD 3L (N,N-dimethyl lactamide, DML). The pre-disproportionation of Cu(I) Br in the presence of tris[2-(dimethylamino)ethyl]amine (Me6TREN) in water generated nascent Cu(0) and Cu(II) complexes that facilitated the fast polymerization of N-tetrahydrofurfuryl lactamide and N,N-dimethyl lactamide acrylate monomers (THFLA and DMLA, respectively) up to near-quantitative conversion with excellent control over molecular weight (5000 < M-n < 83 000) and dispersity (1.05 < D < 1.16). Interestingly, poly(THFLA) showed a degree of polymerization and concentration dependent LCST behavior, which can be fine-tuned (T-cp = 12-62 degrees C) through random copolymerization with the more hydrophilic DMLA monomer. Finally, covalent cross-linking of these polymers resulted in a new family of thermo-responsive hydrogels with excellent biocompatibility and tunable swelling and LCST transition. These illustrate the versatility of these neoteric green polymers in the preparation of smart and biocompatible soft materials.

JTD Keywords: Acid, Ethyl lactate, Living radical polymerization, Monomers, Pnipam, Reductive amination, Ruthenium nanoparticles, Set-lrp, Single, Thermoresponsive polymers


Yazici, N, Opar, E, Kodal, M, Tanören, B, Sezen, M, Özkoc, G, (2022). A novel practical approach for monitoring the crosslink density of an ethylene propylene diene monomer compound: Complementary scanning acoustic microscopy and FIB-SEM-EDS analyses Polymers & Polymer Composites 30, 9673911221074192

Tuning of the crosslink density (CLD) in the rubber compounds is very crucial for optimizing the physical and mechanical properties of the ultimate rubber products. Conventionally, CLD can be measured via rheological methods such as moving die rheometer (MDR), via mechanical tests such as temperature scanning stress relaxation analysis (TSSR), or via direct swelling experiments using Flory–Rehner approach. In the current study, two novel techniques, focused ion beam - scanning electron microscopy (FIB-SEM) processing, with simultaneous energy dispersive X-ray spectrometry (EDS) mapping analysis and scanning acoustic microscopy (SAM) were combined and correlated to conventional methods on a model recipe of ethylene propylene diene monomer (EPDM) compound having different sulphur contents. Depending on the applied technique, the increase in the crosslink density with sulphur content was found to be 1.7 fold for the Flory–Rehner approach and 1.2 fold for both TSSR and MDR. It is directly monitored from the FIB-SEM-EDS analysis that the sulphur distribution and agglomeration behavior increased in line with ZnO content, which is an indirect indication of the rise in crosslink density. The impedance maps of the crosslinked samples obtained through SAM analysis revealed that the impedance of the samples increased with the increasing sulphur content, which can be attributed to higher level of crosslink density. A quantified correlation was obtained between SAM images and the crosslink density of the samples. It was shown that SAM is a promising tool for practical and non-destructive analysis for determining the formation of crosslink density of the rubbers. © The Author(s) 2022.

JTD Keywords: blends, compressibility, crosslink density, cure characteristics, ethylene propylene diene monomer, focused ion beam, mechanical-properties, morphology, natural-rubber, particles, scanning acoustic microscopy, scanning electron microscopy, sulfur, thermal-stability, vulcanization, Composite soft materials, Cross-link densities, Crosslink density, Crosslinking, Density (specific gravity), Ethylene, Ethylene propylene diene monomer, Flory-rehner, Focused ion beam - scanning electron microscopy, Focused ion beam-scanning electron microscopies, Ii-vi semiconductors, Monomers, Moving die rheometers, Physical and mechanical properties, Propylene, Relaxation analysis, Rubber, Scanning acoustic microscopy, Scanning electron microscopy, Stress relaxation, Sulfur contents, Temperature scanning stress relaxations, Zinc oxide


Abramov, A, Maiti, B, Keridou, I, Puiggalí, J, Reiser, O, Díaz, DD, (2021). A pH-Triggered Polymer Degradation or Drug Delivery System by Light-Mediated Cis/Trans Isomerization of o-Hydroxy Cinnamates Macromolecular Rapid Communications 42, 2100213

A new methodology for the pH-triggered degradation of polymers or for the release of drugs under visible light irradiation based on the cyclization of ortho-hydroxy-cinnamates (oHC) to coumarins is described. The key oHC structural motif can be readily incorporated into the rational design of novel photocleavable polymers via click chemistry. This main-chain moiety undergoes a fast photocleavage when irradiated with 455 nm light provided that a suitable base is added. A series of polyethylene glycol-alt-ortho-hydroxy cinnamate (polyethylene glycol (PEG)(n)-alt-oHC)-based polymers are synthesized and the time-dependent visible-light initiated cleavage of the photoactive monomer and polymer is investigated in solution by a variety of spectroscopic and chromatographic techniques. The photo-degradation behavior of the water-soluble poly(PEG(2000)-alt-oHC) is investigated within a broad pH range (pH = 2.1-11.8), demonstrating fast degradation at pH 11.8, while the stability of the polymer is greatly enhanced at pH 2.1. Moreover, the neat polymer shows long-term stability under daylight conditions, thus allowing its storage without special precautions. In addition, two water-soluble PEG-based drug-carrier molecules (mPEG(2000)-oHC-benzhydrol/phenol) are synthesized and used for drug delivery studies, monitoring the process by UV-vis spectroscopy in an ON/OFF intermittent manner.

JTD Keywords: coumarins, drug delivery, e/z-double bond isomerization, o-hydroxy cinnamates, polymer degradation, Aliphatic compounds, Antioxidant activity, Antitumor, Chromatographic techniques, Chromatography, Cis/trans isomerization, Controlled drug delivery, Coumarin derivatives, Coumarins, Drug delivery, Drug delivery system, E/z-double bond isomerization, Films, Hydrogels, Image enhancement, Light, Long term stability, O-hydroxy cinnamates, Particles, Photoactive monomers, Photodegradation, Polyethylene glycols, Polyethylenes, Polymer degradation, Responsive polymers, Salts, Structural motifs, Synthesis (chemical), Targeted drug delivery, Visible light photocatalysis, Visible-light irradiation


Messeguer, J., Masip, I., Montolio, M., del Rio, J. A., Soriano, E., Messeguer, A., (2010). Peptoids bearing tertiary amino residues in the n-alkyl side chains: synthesis of a potent inhibitor of Semaphorin 3A Tetrahedron , 66, (13), 2444-2454

A study on the preparation of N-alkylglycines (peptoids) that contain tertiary amino residues on the N-alkyl side chains is reported. The appropriate combination of the submonomer strategy with N-alkylglycine monomer couplings depending upon the structure of the N-alkyl side chain that must be incorporated into the peptoid is determinant for the efficiency of the synthetic pathway. The application of this strategy to the preparation of SICHI, an N-alkyglycine trimer containing tertiary amino residues in the three N-alkyl branches, and that has been identified as a potent Semaphorin 3A inhibitor, is presented.

JTD Keywords: Peptoids, N-Alkylglycine monomers, Solid-phase synthesis, Semaphorin inhibition, Axonal regeneration