DONATE

Publications

by Keyword: Myoblasts

Molina BG, Fuentes J, Alemán C, Sánchez S, (2024). Merging BioActuation and BioCapacitive properties: A 3D bioprinted devices to self-stimulate using self-stored energy Biosensors & Bioelectronics 251, 116117

Biofabrication of three-dimensional (3D) cultures through the 3D Bioprinting technique opens new perspectives and applications of cell-laden hydrogels. However, to continue with the progress, new BioInks with specific properties must be carefully designed. In this study, we report the synthesis and 3D Bioprinting of an electroconductive BioInk made of gelatin/fibrinogen hydrogel, C2C12 mouse myoblast and 5% w/w of conductive poly (3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs). The influence of PEDOT NPs, incorporated in the cell-laden BioInk, not only showed a positive effect in cells viability, differentiation and myotube functionalities, also allowed the printed constructs to behaved as BioCapacitors. Such devices were able to electrochemically store a significant amount of energy (0.5 mF/cm2), enough to self-stimulate as BioActuator, with typical contractions ranging from 27 to 38 μN, during nearly 50 min. The biofabrication of 3D constructs with the proposed electroconductive BioInk could lead to new devices for tissue engineering, biohybrid robotics or bioelectronics. © 2024

JTD Keywords: 3d bioprinting, Animal, Animals, Bioactuator, Bioactuators, Biocapacitor, Biofabrication, Bioprinting, Biosensing techniques, C2c12 myoblasts, Cells, Chemistry, Electric conductivity, Electroconductive, Electroconductive bioink, Ethylenedioxythiophenes, Genetic procedures, Hydrogel, Hydrogels, Mice, Mouse, Pedot nps, Poly (3,4-ethylenedioxythiophene) nanoparticle, Printing, three-dimensional, Procedures, Synthesis (chemical), Three dimensional printing, Tissue engineering, Tissue scaffolds


Mestre, R, Fuentes, J, Lefaix, L, Wang, JJ, Guix, M, Murillo, G, Bashir, R, Sanchez, S, (2023). Improved Performance of Biohybrid Muscle-Based Bio-Bots Doped with Piezoelectric Boron Nitride Nanotubes Advanced Materials Technologies 8,

Biohybrid robots, or bio-bots, integrate living and synthetic materials following a synergistic strategy to acquire some of the unique properties of biological organisms, like adaptability or bio-sensing, which are difficult to obtain exclusively using artificial materials. Skeletal muscle is one of the preferred candidates to power bio-bots, enabling a wide variety of movements from walking to swimming. Conductive nanocomposites, like gold nanoparticles or graphene, can provide benefits to muscle cells by improving the scaffolds' mechanical and conductive properties. Here, boron nitride nanotubes (BNNTs), with piezoelectric properties, are integrated in muscle-based bio-bots and an improvement in their force output and motion speed is demonstrated. A full characterization of the BNNTs is provided, and their piezoelectric behavior with piezometer and dynamometer measurements is confirmed. It is hypothesized that the improved performance is a result of an electric field generated by the nanocomposites due to stresses produced by the cells during differentiation. This hypothesis is backed with finite element simulations supporting that this stress can generate a non-zero electric field within the matrix. With this work, it is shown that the integration of nanocomposite into muscle-based bio-bots can improve their performance, paving the way toward stronger and faster bio-hybrid robots.

JTD Keywords: Bio-bots, Biohybrid robots, Biomaterials, Boron nitride nanotubes, Cells, Cytotoxicity, Differentiation, Myoblasts, Skeletal muscle tissue, Skeletal-muscle, Stimulation