by Keyword: Fibronectins
Dhawan, U, Williams, JA, Windmill, JFC, Childs, P, Gonzalez-Garcia, C, Dalby, MJ, Salmeron-Sanchez, M, (2024). Engineered Surfaces That Promote Capture of Latent Proteins to Facilitate Integrin-Mediated Mechanical Activation of Growth Factors Advanced Materials 36, 2310789
Conventional osteogenic platforms utilize active growth factors to repair bone defects that are extensive in size, but they can adversely affect patient health. Here, an unconventional osteogenic platform is reported that functions by promoting capture of inactive osteogenic growth factor molecules to the site of cell growth for subsequent integrin-mediated activation, using a recombinant fragment of latent transforming growth factor beta-binding protein-1 (rLTBP1). It is shown that rLTBP1 binds to the growth-factor- and integrin-binding domains of fibronectin on poly(ethyl acrylate) surfaces, which immobilizes rLTBP1 and promotes the binding of latency associated peptide (LAP), within which inactive transforming growth factor beta 1 (TGF-beta 1) is bound. rLTBP1 facilitates the interaction of LAP with integrin beta 1 and the subsequent mechanically driven release of TGF-beta 1 to stimulate canonical TGF-beta 1 signaling, activating osteogenic marker expression in vitro and complete regeneration of a critical-sized bone defect in vivo. An osteogenic platform that functions by capturing inactive growth factor molecules is engineered to overcome conventional challenges associated with the use of active growth factors. The platform triggers capture of inactive transforming growth factor beta-1 for its subsequent integrin-mediated activation which activates osteogenic downstream signaling in vitro and fully repairs critical-sized bone defect in vivo. image
JTD Keywords: Animals, Bone, Bone defect, Bone regeneration, Cell proliferation, Cells, Chemical activation, Defects, Differentiation, Fibronectin, Fibronectins, Growth factor, Growth factors, Humans, Integrin beta1, Integrins, Latency associated peptides, Latent tgf-beta binding proteins, Ltbp1, Osteogenesis, Osteogenic, Protein binding, Recombinant proteins, Release, Repair, Signal transduction, Surface properties, Tgf-beta, Tgf-β1, Transforming growth factor beta1, Transforming growth factors
Kechagia, Z, Sáez, P, Gómez-González, M, Canales, B, Viswanadha, S, Zamarbide, M, Andreu, I, Koorman, T, Beedle, AEM, Elosegui-Artola, A, Derksen, PWB, Trepat, X, Arroyo, M, Roca-Cusachs, P, (2023). The laminin-keratin link shields the nucleus from mechanical deformation and signalling Nature Materials 22, 1409-1420
The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin β4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that β4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.© 2023. The Author(s).
JTD Keywords: actin, cell migration, filaments, force transmission, localization, membrane, motility, proteins, yap, Cell adhesion, Cytoskeleton, Extracellular matrix, Fibronectins, Integrin alpha-6-beta-4, Integrins, Keratins, Laminin
Navarro, M., Benetti, E. M., Zapotoczny, S., Planell, J. A., Vancso, G. J., (2008). Buried, covalently attached RGD peptide motifs in poly(methacrylic acid) brush layers: The effect of brush structure on cell adhesion Langmuir 24, (19), 10996-11002
Iniferter-mediated surface-initiated photopolymerization was used to graft poly(methacrylic acid) (PMAA) brush layers obtained from surface-attached iniferters in self-assembled monolayers to a gold surface. The tethered chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) motif. The modified brushes were extended by reinitiating the polymerization to obtain an additional layer of PMAA, thereby burying the peptide-functionalized segments inside the brush structure. Contact angle measurements and Fourier transform infrared (FTIR) spectroscopy were employed to characterize the wettability and the chemical properties of these platforms. Time of flight secondary ion mass spectroscopy (TOF-SIMS) measurements were performed to monitor the chemical composition of the polymer layer as a function of the distance to the gold surface and obtain information concerning the depth of the RGD motifs inside the brush structure. The brush thickness was evaluated as a function of the polymerization (i.e.. UV-irradiation) time with atomic force microscopy (AFM) and ellipsometry. Cell adhesion tests employing human osteoblasts were performed on substrates with the RGD peptides exposed at the surface as well as covered by a PMAA top brush layer. Immunofluorescence studies demonstrated a variation of the cell morphology as a function of the position of the peptide units along the grafted chains.
JTD Keywords: Ion mass-spectrometry, Transfer radical polymerization, Asymmetric diblock copolymers, Arg-gly-asp, Swelling behaviour, Endothelial-cells, Thin-films, fibronectin, Surfaces, SIMS
Gustavsson, J., Altankov, G., Errachid, A., Samitier, J., Planell, J. A., Engel, E., (2008). Surface modifications of silicon nitride for cellular biosensor applications Journal of Materials Science-Materials in Medicine , 19, (4), 1839-1850
Thin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.
JTD Keywords: Adsorption, Amines/chemistry, Biocompatible Materials/ chemistry, Biosensing Techniques, Cell Differentiation, Cell Line, Cell Proliferation, Electric Impedance, Extracellular Matrix/metabolism, Fibronectins/chemistry, Humans, Materials Testing, Osteoblasts/ cytology, Silicon Compounds/ chemistry, Surface Properties