DONATE

Publications

by Keyword: Poly(lactide)

Schofield, C, Sarrigiannidis, S, Moran-Horowich, A, Jackson, E, Rodrigo-Navarro, A, van Agtmael, T, Cantini, M, Dalby, MJ, Salmeron-Sanchez, M, (2024). An In Vitro Model of the Blood-Brain Barrier for the Investigation and Isolation of the Key Drivers of Barriergenesis Advanced Healthcare Materials 13, e2303777

The blood-brain barrier (BBB) tightly regulates substance transport between the bloodstream and the brain. Models for the study of the physiological processes affecting the BBB, as well as predicting the permeability of therapeutic substances for neurological and neurovascular pathologies, are highly desirable. Existing models, such as Transwell utilizing-models, do not mimic the extracellular environment of the BBB with their stiff, semipermeable, non-biodegradable membranes. To help overcome this, we engineered electrospun membranes from poly L-lactic acid in combination with a nanometric coating of poly(ethyl acrylate) (PEA) that drives fibrillogenesis of fibronectin, facilitating the synergistic presentation of both growth factors and integrin binding sites. Compared to commercial semi-porous membranes, these membranes significantly improve the expression of BBB-related proteins in brain endothelial cells. PEA-coated membranes in combination with different growth factors and extracellular protein coatings reveal nerve growth factor (NGF) and fibroblast growth factor (FGF-2) caused formation of better barriers in vitro. This BBB model offers a robust platform for studying key biochemical factors influencing barrier formation that marries the simplicity of the Transwell model with the highly tunable electrospun PEA-fibronectin membranes. This enables the generation of high-throughput drug permeability models without the need of complicated co-culture conditions. The blood-brain barrier (BBB) tightly regulates substance transport between the bloodstream and the brain. Here a simple model of the BBB that allows culture of endothelial cells on growth-factor functionalised membranes is introduced. This novel in vitro model of the BBB offers a robust platform for studying key barriergenic biochemical factors influencing barrier formation without the use of the complicated co-culture conditions. image

JTD Keywords: Animals, Bbb, Blood-brain barrier, Densit, Differentiation, Ecm, Electrospinning, Endothelial cells, Endothelial-cell lines, Expression, Fiber diameter, Fibroblast-growth-factor, Growth factors, Humans, In vitro mode, In vitro model, Membranes, artificial, Models, biological, Morphology, Permeability, Poly(l-lactic acid), Poly(lactide), Polyesters, Proteins


Colombi, S, Macor, LP, Ortiz-Membrado, L, Pérez-Amodio, S, Jiménez-Piqué, E, Engel, E, Pérez-Madrigal, MM, García-Torres, J, Alemán, C, (2023). Enzymatic Degradation of Polylactic Acid Fibers Supported on a Hydrogel for Sustained Release of Lactate Acs Applied Bio Materials 6, 3889-3901

The incorporation of exogenous lactate into cardiac tissues is a regenerative strategy that is rapidly gaining attention. In this work, two polymeric platforms were designed to achieve a sustained release of lactate, combining immediate and prolonged release profiles. Both platforms contained electrospun poly(lactic acid) (PLA) fibers and an alginate (Alg) hydrogel. In the first platform, named L/K(x)/Alg-PLA, lactate and proteinase K (x mg of enzyme per 1 g of PLA) were directly loaded into the Alg hydrogel, into which PLA fibers were assembled. In the second platform, L/Alg-K(x)/PLA, fibers were produced by electrospinning a proteinase K:PLA solution and, subsequently, assembled within the lactate-loaded hydrogel. After characterizing the chemical, morphological, and mechanical properties of the systems, as well as their cytotoxicity, the release profiles of the two platforms were determined considering different amounts of proteinase K (x = 5.2, 26, and 52 mg of proteinase K per 1 g of PLA), which is known to exhibit a broad cleavage activity. The profiles obtained using L/Alg-K(x)/PLA platforms with x = 26 and 52 were the closest to the criteria that must be met for cardiac tissue regeneration. Finally, the amount of lactate directly loaded in the Alg hydrogel for immediate release and the amount of protein in the electrospinning solution were adapted to achieve a constant lactate release of around 6 mM per day over 1 or 2 weeks. In the optimized bioplatform, in which 6 mM lactate was loaded in the hydrogel, the amount of fibers was increased by a factor of x3, the amount of enzyme was adjusted to 40 mg per 1 g of PLA, and a daily lactate release of 5.9 +/- 2.7 mM over a period of 11 days was achieved. Accordingly, the engineered device fully satisfied the characteristics and requirements for heart tissue regeneration.

JTD Keywords: biodegradable fibers, cardiac tissue regeneration, cell, drug-release, elastic-modulus, electrospinning, heart, nanoindentation, plasma treatment, proteinase, scaffold, stiffness, Alginate, Alginates, Biodegradable fibers, Cardiac tissue, Cardiac tissue regeneration, Cell, Delayed-action preparations, Drug-release, Elastic-modulus, Electrospinning, Endopeptidase k, Heart, Hydrogels, Lactic acid, Nanoindentation, Plasma treatment, Poly(lactide), Polyesters, Proteinase, Regeneration, Scaffold, Skeletal-muscle, Stiffness