DONATE

Publications

by Keyword: Smooth muscle cell

Palma-Florez, S, Lagunas, A, Mir, M, (2024). Neurovascular unit on a chip: the relevance and maturity as an advanced in vitro model Neural Regeneration Research 19, 1165-1166

Rubies, C, Batlle, M, Sanz-de la Garza, M, Dantas, AP, Jorba, I, Fernandez, G, Sanguesa, G, Abuli, M, Brugada, J, Sitges, M, Navajas, D, Mont, L, Guasch, E, (2022). Long-Term Strenuous Exercise Promotes Vascular Injury by Selectively Damaging the Tunica Media Experimental Evidence Jacc Basic Transl Sci 7, 681-693

Moderate exercise has well-founded benefits in cardiovascular health. However, increasing, yet controversial, evidence suggests that extremely trained athletes may not be protected from cardiovascular events as much as moderately trained individuals. In our rodent model, intensive but not moderate training promoted aorta and carotid stiffening and elastic lamina ruptures, tunica media thickening of intramyocardial arteries, and an imbalance between vasoconstrictor and relaxation agents. An up-regulation of angiotensin-converter enzyme, miR-212, miR-132, and miR-146b might account for this deleterious remodeling. Most changes remained after a 4-week detraining. In conclusion, our results suggest that intensive training blunts the benefits of moderate exercise. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.

JTD Keywords: atherosclerosis, cacs, coronary artery calcium score, cad, coronary artery disease, coronary artery disease, cv, cardiovascular, endurance exercise, extreme sport, mmp9, matrix metalloproteinase 9, no, nitric oxide, phe, phenylephrine, vsmc, vascular smooth muscle cell, Age, Atherosclerosis, Cacs, coronary artery calcium score, Cad, coronary artery disease, Coronary artery disease, Coronary atherosclerosis, Cv, cardiovascular, Disease, Endurance exercise, Extreme sport, Metalloproteinases, Micrornas, Mmp9, matrix metalloproteinase 9, No, nitric oxide, Phe, phenylephrine, Physical-activity, Prevalence, Rats, Relevance, Risk, Vascular stiffening, Vsmc, vascular smooth muscle cell


Ben Hamouda, S, Vargas, A, Boivin, R, Miglino, MA, da Palma, RK, Lavoie, JP, (2021). Recellularization of Bronchial Extracellular Matrix With Primary Bronchial Smooth Muscle Cells Journal Of Equine Veterinary Science 96, 103313

© 2020 Elsevier Inc. Severe asthma is associated with an increased airway smooth muscle (ASM) mass and altered composition of the extracellular matrix (ECM). Studies have indicated that ECM-ASM cell interactions contribute to this remodeling and its limited reversibility with current therapy. Three-dimensional matrices allow the study of complex cellular responses to different stimuli in an almost natural environment. Our goal was to obtain acellular bronchial matrices and then develop a recellularization protocol with ASM cells. We studied equine bronchi as horses spontaneously develop a human asthma-like disease. The bronchi were decellularized using Triton/Sodium Deoxycholate. The obtained scaffolds retained their anatomical and histological properties. Using immunohistochemistry and a semi-quantitative score to compare native bronchi to scaffolds revealed no significant variation for matrixial proteins. DNA quantification and electrophoresis revealed that most DNA was 29.6 ng/mg of tissue ± 5.6, with remaining fragments of less than 100 bp. Primary ASM cells were seeded on the scaffolds. Histological analysis of the recellularizations showed that ASM cells migrated and proliferated primarily in the decellularized smooth muscle matrix, suggesting a chemotactic effect of the scaffolds. This is the first report of primary ASM cells preferentially repopulating the smooth muscle matrix layer in bronchial matrices. This protocol is now being used to study the molecular interactions occurring between the asthmatic ECMs and ASM to identify effectors of asthmatic bronchial remodeling.

JTD Keywords: 2d, airway smooth muscle cells, asthma, decellularization, disease, elastin, extracellular matrix, lung scaffolds, migration, peptide, recellularization, tissues, Airway smooth muscle cells, Asthma, Culture-systems, Decellularization, Extracellular matrix, Recellularization