DONATE

Publications

by Keyword: Laminin

Álvarez Z, Ortega JA, Sato K, Sasselli IR, Kolberg-Edelbrock AN, Qiu R, Marshall KA, Nguyen TP, Smith CS, Quinlan KA, Papakis V, Syrgiannis Z, Sather NA, Musumeci C, Engel E, Stupp SI, Kiskinis E, (2023). Artificial extracellular matrix scaffolds of mobile molecules enhance maturation of human stem cell-derived neurons Cell Stem Cell 30, 219-+

Human induced pluripotent stem cell (hiPSC) technologies offer a unique resource for modeling neurological diseases. However, iPSC models are fraught with technical limitations including abnormal aggregation and inefficient maturation of differentiated neurons. These problems are in part due to the absence of synergistic cues of the native extracellular matrix (ECM). We report on the use of three artificial ECMs based on peptide amphiphile (PA) supramolecular nanofibers. All nanofibers display the laminin-derived IKVAV signal on their surface but differ in the nature of their non-bioactive domains. We find that nanofibers with greater intensity of internal supramolecular motion have enhanced bioactivity toward hiPSC-derived motor and cortical neurons. Proteomic, biochemical, and functional assays reveal that highly mobile PA scaffolds caused enhanced β1-integrin pathway activation, reduced aggregation, increased arborization, and matured electrophysiological activity of neurons. Our work highlights the importance of designing biomimetic ECMs to study the development, function, and dysfunction of human neurons.Copyright © 2022 Elsevier Inc. All rights reserved.

JTD Keywords: differentiation, force-field, laminin, migration, nanostructures, peptide amphiphiles, spinal-cord, statistical-model, supramolecular materials, Coarse-grained model, Dynamics, Extracellular matrix, Ikvav, Ipsc-derived neurons, Laminin, Neuronal maturation, Peptide amphiphiles, Supramolecular motion, Supramolecular nanofibers


Fischer, NG, Aparicio, C, (2022). Junctional epithelium and hemidesmosomes: Tape and rivets for solving the “percutaneous device dilemma” in dental and other permanent implants Bioactive Materials 18, 178-198

The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the “device”/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant – as a model percutaneous device – placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists. © 2022 The Authors

JTD Keywords: amino-acid-sequence, bioinspired surfaces, cell-secreted protein, growth-factor receptor, hemidesmosome, integrin beta-4 subunit, junctional epithelium, keratinocyte-derived chemokine, laminin-binding integrins, marginal bone loss, percutaneous device, percutaneous implant, pressure wound therapy, soft-tissue integration, Bioinspired surfaces, Bullous-pemphigoid antigen, Hemidesmosome, Junctional epithelium, Percutaneous device, Percutaneous implant


Narciso, M, Ulldemolins, A, Junior, C, Otero, J, Navajas, D, Farré, R, Gavara, N, Almendros, I, (2022). Novel Decellularization Method for Tissue Slices Frontiers In Bioengineering And Biotechnology 10, 832178

Decellularization procedures have been developed and optimized for the entire organ or tissue blocks, by either perfusion of decellularizing agents through the tissue’s vasculature or submerging large sections in decellularizing solutions. However, some research aims require the analysis of native as well as decellularized tissue slices side by side, but an optimal protocol has not yet been established to address this need. Thus, the main goal of this work was to develop a fast and efficient decellularization method for tissue slices—with an emphasis on lung—while attached to a glass slide. To this end, different decellularizing agents were compared for their effectiveness in cellular removal while preserving the extracellular matrix. The intensity of DNA staining was taken as an indicator of remaining cells and compared to untreated sections. The presence of collagen, elastin and laminin were quantified using immunostaining and signal quantification. Scaffolds resulting from the optimized protocol were mechanically characterized using atomic force microscopy. Lung scaffolds were recellularized with mesenchymal stromal cells to assess their biocompatibility. Some decellularization agents (CHAPS, triton, and ammonia hydroxide) did not achieve sufficient cell removal. Sodium dodecyl sulfate (SDS) was effective in cell removal (1% remaining DNA signal), but its sharp reduction of elastin signal (only 6% remained) plus lower attachment ratio (32%) singled out sodium deoxycholate (SD) as the optimal treatment for this application (6.5% remaining DNA signal), due to its higher elastin retention (34%) and higher attachment ratio (60%). Laminin and collagen were fully preserved in all treatments. The SD decellularization protocol was also successful for porcine and murine (mice and rat) lungs as well as for other tissues such as the heart, kidney, and bladder. No significant mechanical differences were found before and after sample decellularization. The resulting acellular lung scaffolds were shown to be biocompatible (98% cell survival after 72 h of culture). This novel method to decellularize tissue slices opens up new methodological possibilities to better understand the role of the extracellular matrix in the context of several diseases as well as tissue engineering research and can be easily adapted for scarce samples like clinical biopsies. Copyright © 2022 Narciso, Ulldemolins, Júnior, Otero, Navajas, Farré, Gavara and Almendros.

JTD Keywords: biocompatibility, bioscaffold recellularization, decellularization, extracellular matrix, flow, impact, lung, scaffolds, tissue slices, Ammonia, Bio-scaffolds, Biocompatibility, Biological organs, Bioscaffold recellularization, Cell removal, Cells, Collagen, Cytology, Decellularization, Dna, Dna signals, Elastin, Extracellular matrices, Extracellular matrix, Extracellular-matrix, Glycoproteins, Laminin, Lung, Mammals, Recellularization, Scaffolds (biology), Sodium deoxycholate, Sulfur compounds, Tissue, Tissue slice, Tissue slices