DONATE

Publications

by Keyword: Degenerative disease

Palma-Florez, S, Lagunas, A, Mir, M, (2024). Neurovascular unit on a chip: the relevance and maturity as an advanced in vitro model Neural Regeneration Research 19, 1165-1166

Pereira, Ines, Lopez-Martinez, Maria J, Samitier, Josep, (2023). Advances in current in vitro models on neurodegenerative diseases Frontiers In Bioengineering And Biotechnology 11, 1260397

Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.

JTD Keywords: 3d in vitro models, bioprinting, ipsc cell culture, microfluidic device, 3d in vitro models, Bioprinting, Blood-brain-barrier, Cerebral organoids, Culture model, Endothelial-cells, Expression profile, Extracellular-matrix, Ipsc cell culture, Microfluidic device, Neurodegenerative diseases, On-a-chip, Pluripotent stem-cells, Shear-stress, Substrate stiffness


Andrés-Benito, P, Iñigo-Marco, I, Brullas, M, Carmona, M, del Rio, JA, Fernández-Irigoyen, J, Santamaría, E, Povedano, M, Ferrer, I, (2023). Proteostatic modulation in brain aging without associated Alzheimer's disease-and age-related neuropathological changes Aging-Us 15, 3295-3330

(Phospho)proteomics of old-aged subjects without cognitive or behavioral symptoms, and without AD-neuropathological changes and lacking any other neurodegenerative alteration will increase understanding about the physiological state of human brain aging without associate neurological deficits and neuropathological lesions.(Phospho)proteomics using conventional label-free- and SWATH-MS (Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) has been assessed in the frontal cortex (FC) of individuals without NFTs, senile plaques (SPs) and age-related co-morbidities classified by age (years) in four groups; group 1 (young, 30-44); group 2 (middle-aged: MA, 45-52); group 3 (early-elderly, 64-70); and group 4 (late-elderly, 75-85).Protein levels and deregulated protein phosphorylation linked to similar biological terms/functions, but involving different individual proteins, are found in FC with age. The modified expression occurs in cytoskeleton proteins, membranes, synapses, vesicles, myelin, membrane transport and ion channels, DNA and RNA metabolism, ubiquitin-proteasome-system (UPS), kinases and phosphatases, fatty acid metabolism, and mitochondria. Dysregulated phosphoproteins are associated with the cytoskeleton, including microfilaments, actin-binding proteins, intermediate filaments of neurons and glial cells, and microtubules; membrane proteins, synapses, and dense core vesicles; kinases and phosphatases; proteins linked to DNA and RNA; members of the UPS; GTPase regulation; inflammation; and lipid metabolism. Noteworthy, protein levels of large clusters of hierarchically-related protein expression levels are stable until 70. However, protein levels of components of cell membranes, vesicles and synapses, RNA modulation, and cellular structures (including tau and tubulin filaments) are markedly altered from the age of 75. Similarly, marked modifications occur in the larger phosphoprotein clusters involving cytoskeleton and neuronal structures, membrane stabilization, and kinase regulation in the late elderly.Present findings may increase understanding of human brain proteostasis modifications in the elderly in the subpopulation of individuals not having AD neuropathological change and any other neurodegenerative change in any telencephalon region.

JTD Keywords: (phospho)proteomics, cortex, cytoskeleton, hippocampus, kinases, membranes, mitochondria, mitochondrial-function, pathological process, phosphoproteome analysis, phosphorylation, proteome, quantitative proteomics, synapsis, tau-protein, therapeutic target, (phospho)proteomics, Brain aging, Cytoskeleton, Kinases, Membranes, Mitochondria, Neurodegenerative diseases, Proteome, Synapsis


Hutson, TH, Hervera, A, (2022). Editorial: Biochemical and genetic tools to investigate the underlying mechanisms and treatment of sensorimotor pathologies Frontiers In Molecular Neuroscience 15, 1041458

Mir, Monica, Palma-Florez, Sujey, Lagunas, Anna, Jose Lopez-Martinez, Maria, Samitier, Josep, (2022). Biosensors Integration in Blood-Brain Barrier-on-a-Chip: Emerging Platform for Monitoring Neurodegenerative Diseases Acs Sensors 7, 1237-1247

Over the most recent decades, the development of new biological platforms to study disease progression and drug efficacy has been of great interest due to the high increase in the rate of neurodegenerative diseases (NDDs). Therefore, blood-brain barrier (BBB) as an organ-on-a-chip (OoC) platform to mimic brain-barrier performance could offer a deeper understanding of NDDs as well as a very valuable tool for drug permeability testing for new treatments. A very attractive improvement of BBB-oC technology is the integration of detection systems to provide continuous monitoring of biomarkers in real time and a fully automated analysis of drug permeably, rendering more efficient platforms for commercialization. In this Perspective, an overview of the main BBB-oC configurations is introduced and a critical vision of the BBB-oC platforms integrating electronic read out systems is detailed, indicating the strengths and weaknesses of current devices, proposing the great potential for biosensors integration in BBB-oC. In this direction, we name potential biomarkers to monitor the evolution of NDDs related to the BBB and/or drug cytotoxicity using biosensor technology in BBB-oC.

JTD Keywords: biosensors, blood−brain barrier (bbb), neurodegenerative diseases (ndds), organ-on-a-chip (ooc), Bbb, Biosensors, Blood-brain barrier (bbb), Electrical-resistance, Electrochemical biosensors, Endothelial-cells, In-vitro model, Matrix metalloproteinases, Mechanisms, Neurodegenerative diseases (ndds), Organ-on-a-chip (ooc), Permeability, Stress, Transendothelial electrical resistance (teer), Transepithelial, Transepithelial/transendothelial electrical resistance (teer), Transport


Marte, L, Boronat, S, Barrios, R, Barcons-Simon, A, Bolognesi, B, Cabrera, M, Ayté, J, Hidalgo, E, (2022). Expression of Huntingtin and TDP-43 Derivatives in Fission Yeast Can Cause Both Beneficial and Toxic Effects International Journal Of Molecular Sciences 23, 3950

Many neurodegenerative disorders display protein aggregation as a hallmark, Huntingtin and TDP-43 aggregates being characteristic of Huntington disease and amyotrophic lateral sclerosis, respectively. However, whether these aggregates cause the diseases, are secondary by-products, or even have protective effects, is a matter of debate. Mutations in both human proteins can modulate the structure, number and type of aggregates, as well as their toxicity. To study the role of protein aggregates in cellular fitness, we have expressed in a highly tractable unicellular model different variants of Huntingtin and TDP-43. They each display specific patterns of aggregation and toxicity, even though in both cases proteins have to be very highly expressed to affect cell fitness. The aggregation properties of Huntingtin, but not of TDP-43, are affected by chaperones such as Hsp104 and the Hsp40 couple Mas5, suggesting that the TDP-43, but not Huntingtin, derivatives have intrinsic aggregation propensity. Importantly, expression of the aggregating form of Huntingtin causes a significant extension of fission yeast lifespan, probably as a consequence of kidnapping chaperones required for maintaining stress responses off. Our study demonstrates that in general these prion-like proteins do not cause toxicity under normal conditions, and in fact they can protect cells through indirect mechanisms which up-regulate cellular defense pathways. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: aggregation, antioxidant, degradation, features, fission yeast, gene, huntingtin, neurodegenerative diseases, pap1, polyglutamine toxicity, protein aggregation, proteins, stress, tdp-43, Amyotrophic-lateral-sclerosis, Chaperone, Chemistry, Dna binding protein, Dna-binding proteins, Fission yeast, Genetics, Human, Humans, Huntingtin, Metabolism, Molecular chaperones, Neurodegenerative diseases, Prion, Prions, Protein aggregate, Protein aggregates, Protein aggregation, Schizosaccharomyces, Tdp-43


Menal, M. J., Jorba, I., Torres, M., Montserrat, J. M., Gozal, D., Colell, A., Piñol-Ripoll, G., Navajas, D., Almendros, I., Farré, R., (2018). Alzheimer's disease mutant mice exhibit reduced brain tissue stiffness compared to wild-type mice in both normoxia and following intermittent hypoxia mimicking sleep apnea Frontiers in Neurology 9, Article 1

Background: Evidence from patients and animal models suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer’s disease (AD) and that AD is associated with reduced brain tissue stiffness. Aim: To investigate whether intermittent hypoxia (IH) alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA. Methods: Six-eight month old (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) AD mutant mice and wild-type (WT) littermates were subjected to IH (21% O2 40 s to 5% O2 20 s; 6 h/day) or normoxia for 8 weeks. After euthanasia, the stiffness (E) of 200-μm brain cortex slices was measured by atomic force microscopy. Results: Two-way ANOVA indicated significant cortical softening and weight increase in AD mice compared to WT littermates, but no significant effects of IH on cortical stiffness and weight were detected. In addition, reduced myelin was apparent in AD (vs. WT), but no significant differences emerged in the cortex extracellular matrix components laminin and glycosaminoglycans when comparing baseline AD and WT mice. Conclusion: AD mutant mice exhibit reduced brain tissue stiffness following both normoxia and IH mimicking sleep apnea, and such differences are commensurate with increased edema and demyelination in AD.

JTD Keywords: Animal model, Atomic force microscopy, Brain mechanics, Cortex stiffness, Neurodegenerative disease


Sánchez-Danes, A., Benzoni, P., Memo, M., Dell'Era, P., Raya, A., Consiglio, A., (2013). Induced pluripotent stem cell-based studies of Parkinson's disease: Challenges and promises CNS and Neurological Disorders - Drug Targets , 12, (8), 1114-1127

A critical step in the development of effective therapeutics to treat Parkinson's disease (PD) is the identification of molecular pathogenic mechanisms underlying this chronically progressive neurodegenerative disease. However, while animal models have provided valuable information about the molecular basis of PD, the lack of faithful cellular and animal models that recapitulate human pathophysiology is delaying the development of new therapeutics. The reprogramming of somatic cells to induced pluripotent stem cells (iPSC) using delivery of defined combinations of transcription factors is a groundbreaking discovery that opens great opportunities for modeling human diseases, including PD, since iPSC can be generated from patients and differentiated into disease-relevant cell types, which would capture the patients' genetic complexity. Furthermore, human iPSC-derived neuronal models offer unprecedented access to early stages of the disease, allowing the investigation of the events that initiate the pathologic process in PD. Recently, human iPSC-derived neurons from patients with familial and sporadic PD have been generated and importantly they recapitulate some PD-related cell phenotypes, including abnormal α-synuclein accumulation in vitro, and alterations in the autophagy machinery. This review highlights the current PD iPSC-based models and discusses the potential future research directions of this field.

JTD Keywords: Human cellular model, Induced pluripotent stem cells, Neurodegenerative disease, Parkinson's disease


Bravo, R., Arimon, M., Valle-Delgado, J. J., Garcia, R., Durany, N., Castel, S., Cruz, M., Ventura, S., Fernàndez-Busquets, X., (2008). Sulfated polysaccharides promote the assembly of amyloid beta(1-42) peptide into stable fibrils of reduced cytotoxicity Journal of Biological Chemistry , 283, (47), 32471-32483

The histopathological hallmarks of Alzheimer disease are the self-aggregation of the amyloid beta peptide (A beta) in extracellular amyloid fibrils and the formation of intraneuronal Tau filaments, but a convincing mechanism connecting both processes has yet to be provided. Here we show that the endogenous polysaccharide chondroitin sulfate B (CSB) promotes the formation of fibrillar structures of the 42-residue fragment, A beta(1-42). Atomic force microscopy visualization, thioflavin T fluorescence, CD measurements, and cell viability assays indicate that CSB-induced fibrils are highly stable entities with abundant beta-sheet structure that have little toxicity for neuroblastoma cells. We propose a wedged cylinder model for A beta(1-42) fibrils that is consistent with the majority of available data, it is an energetically favorable assembly that minimizes the exposure of hydrophobic areas, and it explains why fibrils do not grow in thickness. Fluorescence measurements of the effect of different A beta(1-42) species on Ca2+ homeostasis show that weakly structured nodular fibrils, but not CSB-induced smooth fibrils, trigger a rise in cytosolic Ca2+ that depends on the presence of both extracellular and intracellular stocks. In vitro assays indicate that such transient, local Ca2+ increases can have a direct effect in promoting the formation of Tau filaments similar to those isolated from Alzheimer disease brains.

JTD Keywords: AFM, Alzheimers-disease, Chondroitin sulfate, Heparan-sulfate, Lipid-bilayers, Beta-peptide, In-vitro, Neurodegenerative diseases, Extracellular-matrix, Prion protein