by Keyword: Spinal cord
Brewer, MK, Torres, P, Ayala, V, Portero-Otin, M, Pamplona, R, Andrés-Benito, P, Ferrer, I, Guinovart, JJ, Duran, J, (2024). Glycogen accumulation modulates life span in a mouse model of amyotrophic lateral sclerosis Journal Of Neurochemistry 168, 744-759
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord. Glial cells, including astrocytes and microglia, have been shown to contribute to neurodegeneration in ALS, and metabolic dysfunction plays an important role in the progression of the disease. Glycogen is a soluble polymer of glucose found at low levels in the central nervous system that plays an important role in memory formation, synaptic plasticity, and the prevention of seizures. However, its accumulation in astrocytes and/or neurons is associated with pathological conditions and aging. Importantly, glycogen accumulation has been reported in the spinal cord of human ALS patients and mouse models. In the present work, using the SOD1G93A mouse model of ALS, we show that glycogen accumulates in the spinal cord and brainstem during symptomatic and end stages of the disease and that the accumulated glycogen is associated with reactive astrocytes. To study the contribution of glycogen to ALS progression, we generated SOD1G93A mice with reduced glycogen synthesis (SOD1G93A GShet mice). SOD1G93A GShet mice had a significantly longer life span than SOD1G93A mice and showed lower levels of the astrocytic pro-inflammatory cytokine Cxcl10, suggesting that the accumulation of glycogen is associated with an inflammatory response. Supporting this, inducing an increase in glycogen synthesis reduced life span in SOD1G93A mice. Altogether, these results suggest that glycogen in reactive astrocytes contributes to neurotoxicity and disease progression in ALS.© 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
JTD Keywords: activation, astrocytes, brain, contributes, expression, glycogen, impairment, mice, motor neurons, neurodegeneration, reactive astrocytes, spinal cord, Amyotrophic lateral sclerosis, Astrocytes, Glycogen, Motor neurons, Motor-neuron degeneration, Neurodegeneration, Spinal cord
García-Alén, L, Kumru, H, Castillo-Escario, Y, Benito-Penalva, J, Medina-Casanovas, J, Gerasimenko, YP, Edgerton, VR, García-Alías, G, Vidal, J, (2023). Transcutaneous Cervical Spinal Cord Stimulation Combined with Robotic Exoskeleton Rehabilitation for the Upper Limbs in Subjects with Cervical SCI: Clinical Trial Biomedicines 11, 589
(1) Background: Restoring arm and hand function is a priority for individuals with cervical spinal cord injury (cSCI) for independence and quality of life. Transcutaneous spinal cord stimulation (tSCS) promotes the upper extremity (UE) motor function when applied at the cervical region. The aim of the study was to determine the effects of cervical tSCS, combined with an exoskeleton, on motor strength and functionality of UE in subjects with cSCI. (2) Methods: twenty-two subjects participated in the randomized mix of parallel-group and crossover clinical trial, consisting of an intervention group (n = 15; tSCS exoskeleton) and a control group (n = 14; exoskeleton). The assessment was carried out at baseline, after the last session, and two weeks after the last session. We assessed graded redefined assessment of strength, sensibility, and prehension (GRASSP), box and block test (BBT), spinal cord independence measure III (SCIM-III), maximal voluntary contraction (MVC), ASIA impairment scale (AIS), and WhoQol-Bref; (3) Results: GRASSP, BBT, SCIM III, cylindrical grip force and AIS motor score showed significant improvement in both groups (p ≤ 0.05), however, it was significantly higher in the intervention group than the control group for GRASSP strength, and GRASSP prehension ability (p ≤ 0.05); (4) Conclusion: our findings show potential advantages of the combination of cervical tSCS with an exoskeleton to optimize the outcome for UE.
JTD Keywords: arm function, cervical spinal cord injury, electrical-stimulation, functional walking, functionality, grip force, hand function, individuals, injury, motor function, reliability, robotics, spasticity, transcutaneous electrical spinal cord stimulation, upper extremity, Epidural stimulation, Transcutaneous electrical spinal cord stimulation, Upper extremity
Hutson, TH, Hervera, A, (2022). Editorial: Biochemical and genetic tools to investigate the underlying mechanisms and treatment of sensorimotor pathologies Frontiers In Molecular Neuroscience 15, 1041458
Castillo-Escario, Y, Kumru, H, Ferrer-Lluis, I, Vidal, J, Jané, R, (2021). Detection of Sleep-Disordered Breathing in Patients with Spinal Cord Injury Using a Smartphone Sensors 21, 7182
Patients with spinal cord injury (SCI) have an increased risk of sleep-disordered breathing (SDB), which can lead to serious comorbidities and impact patients’ recovery and quality of life. However, sleep tests are rarely performed on SCI patients, given their multiple health needs and the cost and complexity of diagnostic equipment. The objective of this study was to use a novel smartphone system as a simple non-invasive tool to monitor SDB in SCI patients. We recorded pulse oximetry, acoustic, and accelerometer data using a smartphone during overnight tests in 19 SCI patients and 19 able-bodied controls. Then, we analyzed these signals with automatic algorithms to detect desaturation, apnea, and hypopnea events and monitor sleep position. The apnea–hypopnea index (AHI) was significantly higher in SCI patients than controls (25 ± 15 vs. 9 ± 7, p < 0.001). We found that 63% of SCI patients had moderate-to-severe SDB (AHI ? 15) in contrast to 21% of control subjects. Most SCI patients slept predominantly in supine position, but an increased occurrence of events in supine position was only observed for eight patients. This study highlights the problem of SDB in SCI and provides simple cost-effective sleep monitoring tools to facilitate the detection, understanding, and management of SDB in SCI patients.
JTD Keywords: apnea syndrome, biomedical signal processing, individuals, mhealth, monitoring, nasal resistance, people, position, prevalence, questionnaire, sample, sleep apnea, sleep position, sleep-disordered breathing, smartphone, time, Apnea-hypopnea indices, Biomedical signal processing, Biomedical signals processing, Cost effectiveness, Diagnosis, Mhealth, Monitoring, Noninvasive medical procedures, Oximeters, Oxygen-saturation, Patient rehabilitation, Simple++, Sleep apnea, Sleep position, Sleep research, Sleep-disordered breathing, Smart phones, Smartphone, Smartphones, Spinal cord injury, Spinal cord injury patients
Castillo-Escario, Y, Kumru, H, Valls-Solé, J, García-Alen, L, Jané, R, Vidal, J, (2021). Quantitative evaluation of trunk function and the StartReact effect during reaching in patients with cervical and thoracic spinal cord injury Journal Of Neural Engineering 18, 0460d2
Objective. Impaired trunk stability is frequent in spinal cord injury (SCI), but there is a lack of quantitative measures for assessing trunk function. Our objectives were to: (a) evaluate trunk muscle activity and movement patterns during a reaching task in SCI patients, (b) compare the impact of cervical (cSCI) and thoracic (tSCI) injuries in trunk function, and (c) investigate the effects of a startling acoustic stimulus (SAS) in these patients. Approach. Electromyographic (EMG) and smartphone accelerometer data were recorded from 15 cSCI patients, nine tSCI patients, and 24 healthy controls, during a reaching task requiring trunk tilting. We calculated the response time (RespT) until pressing a target button, EMG onset latencies and amplitudes, and trunk tilt, lateral deviation, and other movement features from accelerometry. Statistical analysis was applied to analyze the effects of group (cSCI, tSCI, control) and condition (SAS, non-SAS) in each outcome measure. Main results. SCI patients, especially those with cSCI, presented significantly longer RespT and EMG onset latencies than controls. Moreover, in SCI patients, forward trunk tilt was accompanied by significant lateral deviation. RespT and EMG latencies were remarkably shortened by the SAS (the so-called StartReact effect) in tSCI patients and controls, but not in cSCI patients, who also showed higher variability. Significance. The combination of EMG and smartphone accelerometer data can provide quantitative measures for the assessment of trunk function in SCI. Our results show deficits in postural control and compensatory strategies employed by SCI patients, including delayed responses and higher lateral deviations, possibly to improve sitting balance. This is the first study investigating the StartReact responses in trunk muscles in SCI patients and shows that the SAS significantly accelerates RespT in tSCI, but not in cSCI, suggesting an increased cortical control exerted by these patients.
JTD Keywords: accelerometer, electromyography, impairment, individuals, movements, postural stability, reaction-time, reliability, sitting balance, smartphone, spinal cord injury, startle, startreact, strategies, stroke, trunk, Accelerometer, Electromyography, Sitting balance, Smartphone, Spinal cord injury, Startreact, Trunk
Hervera, A., Zhou, L., Palmisano, I., McLachlan, E., Kong, G., Hutson, T. H., Danzi, M. C., Lemmon, V. P., Bixby, J. L., Matamoros-Angles, A., Forsberg, K., De Virgiliis, F., Matheos, D. P., Kwapis, J., Wood, M. A., Puttagunta, R., del Río, J. A., Di Giovanni, S., (2019). PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure EMBO Journal 38, (13), e101032
The molecular mechanisms discriminating between regenerative failure and success remain elusive. While a regeneration-competent peripheral nerve injury mounts a regenerative gene expression response in bipolar dorsal root ganglia (DRG) sensory neurons, a regeneration-incompetent central spinal cord injury does not. This dichotomic response offers a unique opportunity to investigate the fundamental biological mechanisms underpinning regenerative ability. Following a pharmacological screen with small-molecule inhibitors targeting key epigenetic enzymes in DRG neurons, we identified HDAC3 signalling as a novel candidate brake to axonal regenerative growth. In vivo, we determined that only a regenerative peripheral but not a central spinal injury induces an increase in calcium, which activates protein phosphatase 4 that in turn dephosphorylates HDAC3, thus impairing its activity and enhancing histone acetylation. Bioinformatics analysis of ex vivo H3K9ac ChIPseq and RNAseq from DRG followed by promoter acetylation and protein expression studies implicated HDAC3 in the regulation of multiple regenerative pathways. Finally, genetic or pharmacological HDAC3 inhibition overcame regenerative failure of sensory axons following spinal cord injury. Together, these data indicate that PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure.
JTD Keywords: Calcium, HDAC3, Nerve regeneration, Spinal cord injury, Transcription