DONATE

Publications

by Keyword: strategies

Montero, J, Haq, R, (2022). Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics Cancer Discovery 12, 1217-1232

A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the anti apoptotic BCL2 antagonist venetoclax has fi nally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. Signifi cance: Targeting antiapoptotic family members has proven effi cacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.

JTD Keywords: Anti-apoptotic mcl-1, Bcl-x-l, Bim expression, Chemotherapy sensitivity, Combination strategies, Family proteins, Multiple-myeloma, Oblimersen sodium, Phase-i, Venetoclax resistance


Dias JMS, Estima D, Punte H, Klingner A, Marques L, Magdanz V, Khalil ISM, (2022). Modeling and Characterization of the Passive Bending Stiffness of Nanoparticle-Coated Sperm Cells using Magnetic Excitation Advanced Theory And Simulations 5,

Of all the various locomotion strategies in low- (Formula presented.), traveling-wave propulsion methods with an elastic tail are preferred because they can be developed using simple designs and fabrication procedures. The only intrinsic property of the elastic tail that governs the form and rate of wave propagation along its length is the bending stiffness. Such traveling wave motion is performed by spermatozoa, which possess a tail that is characterized by intrinsic variable stiffness along its length. In this paper, the passive bending stiffness of the magnetic nanoparticle-coated flagella of bull sperm cells is measured using a contactless electromagnetic-based excitation method. Numerical elasto-hydrodynamic models are first developed to predict the magnetic excitation and relaxation of nanoparticle-coated nonuniform flagella. Then solutions are provided for various groups of nonuniform flagella with disparate nanoparticle coatings that relate their bending stiffness to their decay rate after the magnetic field is removed and the flagellum restores its original configuration. The numerical models are verified experimentally, and capture the effect of the nanoparticle coating on the bending stiffness. It is also shown that electrostatic self-assembly enables arbitrarily magnetizable cellular segments with variable stiffness along the flagellum. The bending stiffness is found to depend on the number and location of the magnetized cellular segments. © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH.

JTD Keywords: cilia, flagella, flagellar propulsion, low reynolds numbers, magnetic, microswimmers, passive, sperm cell, Bending stiffness, Cells, Cellulars, Coatings, Decay (organic), Electric excitation, Excited states, Flagellar propulsion, Locomotion strategies, Low reynolds numbers, Magnetic, Magnetic excitations, Nanoparticle coatings, Passive, Propulsion methods, Self assembly, Simple++, Sperm cell, Sperm cells, Stiffness, Travelling waves, Variable stiffness, Wave propagation, Younǵs modulus


Chausse, Victor, Schieber, Romain, Raymond, Yago, Ségry, Brian, Sabaté, Ramon, Kolandaivelu, Kumaran, Ginebra, Maria-Pau, Pegueroles, Marta, (2021). Solvent-cast direct-writing as a fabrication strategy for radiopaque stents Additive Manufacturing 48,

Guasch-Girbau, A, Fernandez-Busquets, X, (2021). Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies Pharmaceutics 13, 2189

Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs’ target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: antibody-bearing liposomes, antimalarial drugs, combination therapies, drug-delivery strategies, malaria diagnosis, malaria prophylaxis, malaria therapy, nanocarriers, nanomedicine, nanoparticles, nanotechnology, plasmodium, plasmodium-falciparum, red-blood-cells, targeted delivery, targeted drug delivery, vitro antimalarial activity, Antimalarial drugs, Isothermal amplification lamp, Malaria diagnosis, Malaria prophylaxis, Malaria therapy, Nanocarriers, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Castillo-Escario, Y, Kumru, H, Valls-Solé, J, García-Alen, L, Jané, R, Vidal, J, (2021). Quantitative evaluation of trunk function and the StartReact effect during reaching in patients with cervical and thoracic spinal cord injury Journal Of Neural Engineering 18, 0460d2

Objective. Impaired trunk stability is frequent in spinal cord injury (SCI), but there is a lack of quantitative measures for assessing trunk function. Our objectives were to: (a) evaluate trunk muscle activity and movement patterns during a reaching task in SCI patients, (b) compare the impact of cervical (cSCI) and thoracic (tSCI) injuries in trunk function, and (c) investigate the effects of a startling acoustic stimulus (SAS) in these patients. Approach. Electromyographic (EMG) and smartphone accelerometer data were recorded from 15 cSCI patients, nine tSCI patients, and 24 healthy controls, during a reaching task requiring trunk tilting. We calculated the response time (RespT) until pressing a target button, EMG onset latencies and amplitudes, and trunk tilt, lateral deviation, and other movement features from accelerometry. Statistical analysis was applied to analyze the effects of group (cSCI, tSCI, control) and condition (SAS, non-SAS) in each outcome measure. Main results. SCI patients, especially those with cSCI, presented significantly longer RespT and EMG onset latencies than controls. Moreover, in SCI patients, forward trunk tilt was accompanied by significant lateral deviation. RespT and EMG latencies were remarkably shortened by the SAS (the so-called StartReact effect) in tSCI patients and controls, but not in cSCI patients, who also showed higher variability. Significance. The combination of EMG and smartphone accelerometer data can provide quantitative measures for the assessment of trunk function in SCI. Our results show deficits in postural control and compensatory strategies employed by SCI patients, including delayed responses and higher lateral deviations, possibly to improve sitting balance. This is the first study investigating the StartReact responses in trunk muscles in SCI patients and shows that the SAS significantly accelerates RespT in tSCI, but not in cSCI, suggesting an increased cortical control exerted by these patients.

JTD Keywords: accelerometer, electromyography, impairment, individuals, movements, postural stability, reaction-time, reliability, sitting balance, smartphone, spinal cord injury, startle, startreact, strategies, stroke, trunk, Accelerometer, Electromyography, Sitting balance, Smartphone, Spinal cord injury, Startreact, Trunk


Cereta, AD, Oliveira, VR, Costa, IP, Guimaraes, LL, Afonso, JPR, Fonseca, AL, de Sousa, ART, Silva, GAM, Mello, DACPG, de Oliveira, LVF, da Palma, RK, (2021). Early Life Microbial Exposure and Immunity Training Effects on Asthma Development and Progression Frontiers Of Medicine 8,

Asthma is the most common inflammatory disease affecting the lungs, which can be caused by intrauterine or postnatal insults depending on the exposure to environmental factors. During early life, the exposure to different risk factors can influence the microbiome leading to undesired changes to the immune system. The modulations of the immunity, caused by dysbiosis during development, can increase the susceptibility to allergic diseases. On the other hand, immune training approaches during pregnancy can prevent allergic inflammatory diseases of the airways. In this review, we focus on evidence of risk factors in early life that can alter the development of lung immunity associated with dysbiosis, that leads to asthma and affect childhood and adult life. Furthermore, we discuss new ideas for potential prevention strategies that can be applied during pregnancy and postnatal period.

JTD Keywords: asthma, dysbiosis, early life immunity, lung microbiome, Adulthood, Antibiotic exposure, Asthma, Childhood, Disease, Disease exacerbation, Dysbiosis, Early life immunity, Gut microbiome, Human, Immunity, Intestine flora, Lung development, Lung microbiome, Lung microbiota, Nonhuman, Perinatal period, Pregnancy, Prevention, Prevention strategies, Review, Risk, Risk factor, Sensitization, Supplementation, Vitamin-d, Wheeze


Xu, D., Wang, Y., Liang, C., You, Y., Sanchez, S., Ma, X., (2020). Self-propelled micro/nanomotors for on-demand biomedical cargo transportation Small 16, (27), 1902464

Micro/nanomotors (MNMs) are miniaturized machines that can perform assigned tasks at the micro/nanoscale. Over the past decade, significant progress has been made in the design, preparation, and applications of MNMs that are powered by converting different sources of energy into mechanical force, to realize active movement and fulfill on-demand tasks. MNMs can be navigated to desired locations with precise controllability based on different guidance mechanisms. A considerable research effort has gone into demonstrating that MNMs possess the potential of biomedical cargo loading, transportation, and targeted release to achieve therapeutic functions. Herein, the recent advances of self-propelled MNMs for on-demand biomedical cargo transportation, including their self-propulsion mechanisms, guidance strategies, as well as proof-of-concept studies for biological applications are presented. In addition, some of the major challenges and possible opportunities of MNMs are identified for future biomedical applications in the hope that it may inspire future research.

JTD Keywords: Biomedical applications, Cargo transportation, Guidance strategies, Micro/nanomotors, Self-propulsion


García-Díaz, María, Birch, Ditlev, Wan, Feng, Mørck Nielsen, Hanne, (2018). The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles Advanced Drug Delivery Reviews 124, 107-124

Mucosal administration of drugs and drug delivery systems has gained increasing interest. However, nanoparticles intended to protect and deliver drugs to epithelial surfaces require transport through the surface-lining mucus. Translation from bench to bedside is particularly challenging for mucosal administration since a variety of parameters will influence the specific barrier properties of the mucus including the luminal fluids, the microbiota, the mucus composition and clearance rate, and the condition of the underlying epithelia. Besides, after administration, nanoparticles interact with the mucosal components, forming a biomolecular corona that modulates their behavior and fate after mucosal administration. These interactions are greatly influenced by the nanoparticle properties, and therefore different designs and surface-engineering strategies have been proposed. Overall, it is essential to evaluate these biomolecule-nanoparticle interactions by complementary techniques using complex and relevant mucus barrier matrices.

JTD Keywords: Nanoparticle formulation strategies, Corona formation, Digestive tract, Respiratory tract, Luminal content, Methodologies, Analysis


Páez-Avilés, C., Juanola-Feliu, E., Samitier, J., (2018). Cross-fertilization of Key Enabling Technologies: An empirical study of nanotechnology-related projects based on innovation management strategies Journal of Engineering and Technology Management 49, 22-45

In this empirical study, we have analysed three innovation management strategies that could be influencing the process of cross-fertilization of KETs (Key Enabling Technologies), currently being fostered by European initiatives. To do so, we have interviewed Nanotechnology-related project leaders participating in Horizon 2020. Results from a MCA (Multiple Correspondence Analysis) have shown that higher levels of cross-fertilization of KETs are associated with customer/market-oriented projects developed in informal networks characterized by a moderately heterogeneous knowledge, with a high level of involvement in nanotechnologies. With these outcomes, we argue that absorptive capacities and dynamic capabilities of organizations are decisive in a technologically convergent approach, lead by open innovation strategies.

JTD Keywords: Cross-fertilization, Innovation management strategies, Innovation projects, KETs, Nanotechnology


Penon, O., Novo, S., Duran, S., Ibanez, E., Nogues, C., Samitier, J., Duch, M., Plaza, J. A., Perez-Garcia, L., (2012). Efficient biofunctionalization of polysilicon barcodes for adhesion to the zona pellucida of mouse embryos Bioconjugate Chemistry , 23, (12), 2392-2402

Cell tracking is an emergent area in nano-biotechnology, promising the study of individual cells or the identification of populations of cultured cells. In our approach, microtools designed for extracellular tagging are prepared, because using biofunctionalized polysilicon barcodes to tag cell membranes externally avoids the inconveniences of cell internalization. The crucial covalent biofunctionalization process determining the ultimate functionality was studied in order to find the optimum conditions to link a biomolecule to a polysilicon barcode surface using a self-assembled monolayer (SAM) as the connector. Specifically, a lectin (wheat germ agglutinin, WGA) was used because of its capacity to recognize some specific carbohydrates present on the surface of most mammalian cells. Self-assembled monolayers were prepared on polysilicon surfaces including aldehyde groups as terminal functions to study the suitability of their covalent chemical bonding to WGA. Some parameters, such as the polysilicon surface roughness or the concentration of WGA, proved to be crucial for successful biofunctionalization and bioactivity. The SAMs were characterized by contact angle measurements, time-of-flight secondary ion mass spectrometry (TOF-SIMS), laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS), and atomic force microscopy (AFM). The biofunctionalization step was also characterized by fluorescence microscopy and, in the case of barcodes, by adhesion experiments to the zona pellucida of mouse embryos. These experiments showed high barcode retention rates after 96 h of culture as well as high embryo viability to the blastocyst stage, indicating the robustness of the biofunctionalization and, therefore, the potential of these new microtools to be used for cell tagging.

JTD Keywords: Self-assembled monolayers, Wheat-germ-agglutinin, Protein immobilization strategies, Mass-spectrometry, Cell-surface, Petide, Binding, Identifications, Nanoparticles, Recognition