DONATE

Publications

by Keyword: Diagnosis

Gallo, J, Villasante, A, (2023). Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment International Journal Of Molecular Sciences 24, 15484

Nanomedicine presents innovative solutions for cancer treatment, including photothermal therapy (PTT). PTT centers on the design of photoactivatable nanoparticles capable of absorbing non-toxic near-infrared light, generating heat within target cells to induce cell death. The successful transition from benchside to bedside application of PTT critically depends on the core properties of nanoparticles responsible for converting light into heat and the surface properties for precise cell-specific targeting. Precisely targeting the intended cells remains a primary challenge in PTT. In recent years, a groundbreaking approach has emerged to address this challenge by functionalizing nanocarriers and enhancing cell targeting. This strategy involves the creation of biomimetic nanoparticles that combine desired biocompatibility properties with the immune evasion mechanisms of natural materials. This review comprehensively outlines various strategies for designing biomimetic photoactivatable nanocarriers for PTT, with a primary focus on its application in cancer therapy. Additionally, we shed light on the hurdles involved in translating PTT from research to clinical practice, along with an overview of current clinical applications.

JTD Keywords: biomimetic nanoparticles, cancer treatment, diagnosis, drug-delivery, erythrocyte-membrane, facile synthesis, iron-oxide nanoparticles, magnetic nanoparticles, membrane-camouflaged nanoparticles, metastatic breast-cancer, size, stem-cells, Biomimetic nanoparticles, Cancer treatment, Membrane-camouflaged nanoparticles, Photothermal therapy


Davidson, C, Caguana, OA, Lozano-García, M, Guevara, MA, Estrada-Petrocelli, L, Ferrer-Lluis, I, Castillo-Escario, Y, Ausín, P, Gea, J, Jané, R, (2023). Differences in acoustic features of cough by pneumonia severity in patients with COVID-19: a cross-sectional study Erj Open Research 9, 00247-2022

BackgroundAcute respiratory syndrome due to coronavirus 2 (SARS-CoV-2) is characterised by heterogeneous levels of disease severity. It is not necessarily apparent whether a patient will develop a severe disease or not. This cross-sectional study explores whether acoustic properties of the cough sound of patients with coronavirus disease (COVID-19), the illness caused by SARS-CoV-2, correlate with their disease and pneumonia severity, with the aim of identifying patients with a severe disease.MethodsVoluntary cough sounds were recorded using a smartphone in 70 COVID-19 patients within the first 24 h of their hospital arrival, between April 2020 and May 2021. Based on gas exchange abnormalities, patients were classified as mild, moderate, or severe. Time- and frequency-based variables were obtained from each cough effort and analysed using a linear mixed-effects modelling approach.ResultsRecords from 62 patients (37% female) were eligible for inclusion in the analysis, with mild, moderate, and severe groups consisting of 31, 14 and 17 patients respectively. 5 of the parameters examined were found to be significantly different in the cough of patients at different disease levels of severity, with a further 2 parameters found to be affected differently by the disease severity in men and women.ConclusionsWe suggest that all these differences reflect the progressive pathophysiological alterations occurring in the respiratory system of COVID-19 patients, and potentially would provide an easy and cost-effective way to initially stratify patients, identifying those with more severe disease, and thereby most effectively allocate healthcare resources.

JTD Keywords: Diagnosis


Davidson, C, Caguana, OA, Lozano-Garcia, M, Arita, M, Estrada-Petrocelli, L, Ferrer-Lluis, I, Castillo-Escario, Y, Ausin, P, Gea, J, Jane, R, (2022). Gender differences in frequency-based parameters of COVID-19 cough at varying levels of disease severity European Respiratory Journal 60

Sierra-Agudelo J, Rodriguez-Trujillo R, Samitier J, (2022). Microfluidics for the Isolation and Detection of Circulating Tumor Cells Microfluidics And Biosensors In Cancer Research 1379, 389-412

Nowadays, liquid biopsy represents one of the most promising techniques for early diagnosis, monitoring, and therapy screening of cancer. This novel methodology includes, among other techniques, the isolation, capture, and analysis of circulating tumor cells (CTCs). Nonetheless, the identification of CTC from whole blood is challenging due to their extremely low concentration (1-100 per ml of whole blood), and traditional methods result insufficient in terms of purity, recovery, throughput and/or viability of the processed sample. In this context, the development of microfluidic devices for detecting and isolating CTCs offers a wide range of new opportunities due to their excellent properties for cell manipulation and the advantages to integrate and bring different laboratory processes into the microscale improving the sensitivity, portability, reducing cost and time. This chapter explores current and recent microfluidic approaches that have been developed for the analysis and detection of CTCs, which involve cell capture methods based on affinity binding and label-free methods and detection based on electrical, chemical, and optical sensors. All the exposed technologies seek to overcome the limitations of commercial systems for the analysis and isolation of CTCs, as well as to provide extended analysis that will allow the development of novel and more efficient diagnostic tools.© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

JTD Keywords: cancer detection, cancer diagnosis, cancer-cells, capture, chip, circulating tumor cells, enrichment, liquid biopsy, microchannel, separation, ultra-fast, Cancer detection, Cancer diagnosis, Circulating tumor cells, Label-free isolation, Liquid biopsy, Microfluidics


de Oliveira, LF, Mallafré-Muro, C, Giner, J, Perea, L, Sibila, O, Pardo, A, Marco, S, (2022). Breath analysis using electronic nose and gas chromatography-mass spectrometry: A pilot study on bronchial infections in bronchiectasis Clinica Chimica Acta 526, 6-13

Background and aims: In this work, breath samples from clinically stable bronchiectasis patients with and without bronchial infections by Pseudomonas Aeruginosa- PA) were collected and chemically analysed to determine if they have clinical value in the monitoring of these patients. Materials and methods: A cohort was recruited inviting bronchiectasis patients (25) and controls (9). Among the former group, 12 members were suffering PA infection. Breath samples were collected in Tedlar bags and analyzed by e-nose and Gas Chromatography-Mass Spectrometry (GC-MS). The obtained data were analyzed by chemometric methods to determine their discriminant power in regards to their health condition. Results were evaluated with blind samples. Results: Breath analysis by electronic nose successfully separated the three groups with an overall classification rate of 84% for the three-class classification problem. The best discrimination was obtained between control and bronchiectasis with PA infection samples 100% (CI95%: 84–100%) on external validation and the results were confirmed by permutation tests. The discrimination analysis by GC-MS provided good results but did not reach proper statistical significance after a permutation test. Conclusions: Breath sample analysis by electronic nose followed by proper predictive models successfully differentiated between control, Bronchiectasis and Bronchiectasis PA samples. © 2021 The Author(s)

JTD Keywords: biomarkers, breath analysis, bronchiectasis, diagnosis, e-nose, fingerprints, gc-ms, identification, lung-cancer, partial least-squares, pseudomonas-aeruginosa, signal processing, validation, volatile organic-compounds, Airway bacterial-colonization, Breath analysis, Bronchiectasis, E-nose, Gc-ms, Signal processing


RIZZELO, L, DE MATTEIS, V, (2022). Identification of SARS-CoV-2 by Gold Nanoparticles Biocell 46, 2369-2380

The SARS-CoV-2 outbreaks highlighted the need for effective, reliable, fast, easy-to-do and cheap diagnostics procedures. We pragmatically experienced that an early positive-case detection, inevitably coupled with a mass vaccination campaign, is a milestone to control the COVID-19 pandemic. Gold nanoparticles (AuNPs) can indeed play a crucial role in this context, as their physicochemical, optics and electronics properties are being extensively used in photothermal therapy (PTT), radiation therapy (RT), drug delivery and diagnostic. AuNPs can be synthesized by several approaches to obtain different sizes and shapes that can be easily functionalized with many kinds of molecules such as antibodies, proteins, probes, and lipids. In addition, AuNPs showed high biocompatibility making them useful tool in medicine field. We thus reviewed here the most relevant evidence on AuNPs as effective way to detect the presence of SARS-CoV-2 antigens. We trust future diagnostic efforts must take this 'old-fashioned' nanotechnology tool into consideration for the development and commercialization of reliable and feasible detection kits.

JTD Keywords: Aggregation, Antibodies, Assay, Covid-19, Diagnosis, Enhanced raman-scattering, Gold nanoparticles, Immunoassay, Pandemic disease, Physicochemical properties, Rapid detection, Sars-cov-2, Sensors, Surface-plasmon resonance, Therapy


Dulay, S, Rivas, L, Pla, L, Berdun, S, Eixarch, E, Gratacos, E, Illa, M, Mir, M, Samitier, J, (2021). Fetal ischemia monitoring with in vivo implanted electrochemical multiparametric microsensors Journal Of Biological Engineering 15, 28

Under intrauterine growth restriction (IUGR), abnormal attainment of the nutrients and oxygen by the fetus restricts the normal evolution of the prenatal causing in many cases high morbidity being one of the top-ten causes of neonatal death. The current gold standards in hospitals to detect this relevant problem is the clinical observation by echography, cardiotocography and Doppler. These qualitative techniques are not conclusive and requires risky invasive fetal scalp blood testing and/or amniocentesis. We developed micro-implantable multiparametric electrochemical sensors for measuring ischemia in real time in fetal tissue and vascular. This implantable technology is designed to continuous monitoring for an early detection of ischemia to avoid potential fetal injury. Two miniaturized electrochemical sensors were developed based on oxygen and pH detection. The sensors were optimized in vitro under controlled concentration, to assess the selectivity and sensitivity required. The sensors were then validated in vivo in the ewe fetus model, by means of their insertion in the muscle leg and inside the iliac artery of the fetus. Ischemia was achieved by gradually obstructing the umbilical cord to regulate the amount of blood reaching the fetus. An important challenge in fetal monitoring is the detection of low levels of oxygen and pH changes under ischemic conditions, requiring high sensitivity sensors. Significant differences were observed in both; pH and pO(2) sensors under changes from normoxia to hypoxia states in the fetus tissue and vascular with both sensors. Herein, we demonstrate the feasibility of the developed sensors for future fetal monitoring in medical applications.

JTD Keywords: electrochemical biosensor, implantable sensor, in vivo validation, ischemia detection, tissue and vascular monitoring, Animal experiment, Animal model, Animal tissue, Article, Blood-gases, Brain, Classification, Controlled study, Diagnosis, Doppler, Early diagnosis, Electrochemical analysis, Electrochemical biosensor, Ewe, Feasibility study, Female, Fetus, Fetus disease, Fetus monitoring, Gestational age, Hypoxemia, Iliac artery, Implantable sensor, In vivo validation, Intrauterine growth restriction, Intrauterine growth retardation, Ischemia detection, Leg muscle, Management, Nonhuman, Oxygen consumption, Ph, Ph and oxygen detection, Ph measurement, Process optimization, Sheep, Tissue and vascular monitoring, Umbilical-cord occlusion


Guasch-Girbau, A, Fernandez-Busquets, X, (2021). Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies Pharmaceutics 13, 2189

Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs’ target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: antibody-bearing liposomes, antimalarial drugs, combination therapies, drug-delivery strategies, malaria diagnosis, malaria prophylaxis, malaria therapy, nanocarriers, nanomedicine, nanoparticles, nanotechnology, plasmodium, plasmodium-falciparum, red-blood-cells, targeted delivery, targeted drug delivery, vitro antimalarial activity, Antimalarial drugs, Isothermal amplification lamp, Malaria diagnosis, Malaria prophylaxis, Malaria therapy, Nanocarriers, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Castillo-Escario, Y, Kumru, H, Ferrer-Lluis, I, Vidal, J, Jané, R, (2021). Detection of Sleep-Disordered Breathing in Patients with Spinal Cord Injury Using a Smartphone Sensors 21, 7182

Patients with spinal cord injury (SCI) have an increased risk of sleep-disordered breathing (SDB), which can lead to serious comorbidities and impact patients’ recovery and quality of life. However, sleep tests are rarely performed on SCI patients, given their multiple health needs and the cost and complexity of diagnostic equipment. The objective of this study was to use a novel smartphone system as a simple non-invasive tool to monitor SDB in SCI patients. We recorded pulse oximetry, acoustic, and accelerometer data using a smartphone during overnight tests in 19 SCI patients and 19 able-bodied controls. Then, we analyzed these signals with automatic algorithms to detect desaturation, apnea, and hypopnea events and monitor sleep position. The apnea–hypopnea index (AHI) was significantly higher in SCI patients than controls (25 ± 15 vs. 9 ± 7, p < 0.001). We found that 63% of SCI patients had moderate-to-severe SDB (AHI ? 15) in contrast to 21% of control subjects. Most SCI patients slept predominantly in supine position, but an increased occurrence of events in supine position was only observed for eight patients. This study highlights the problem of SDB in SCI and provides simple cost-effective sleep monitoring tools to facilitate the detection, understanding, and management of SDB in SCI patients.

JTD Keywords: apnea syndrome, biomedical signal processing, individuals, mhealth, monitoring, nasal resistance, people, position, prevalence, questionnaire, sample, sleep apnea, sleep position, sleep-disordered breathing, smartphone, time, Apnea-hypopnea indices, Biomedical signal processing, Biomedical signals processing, Cost effectiveness, Diagnosis, Mhealth, Monitoring, Noninvasive medical procedures, Oximeters, Oxygen-saturation, Patient rehabilitation, Simple++, Sleep apnea, Sleep position, Sleep research, Sleep-disordered breathing, Smart phones, Smartphone, Smartphones, Spinal cord injury, Spinal cord injury patients


Illa M, Pla L, Berdún S, Mir M, Rivas L, Dulay S, Picard-Hagen N, Samitier J, Gratacós E, Eixarch E, (2021). Miniaturized electrochemical sensors to monitor fetal hypoxia and acidosis in a pregnant sheep model Biomedicines 9,

Perinatal asphyxia is a major cause of severe brain damage and death. For its prenatal identification, Doppler ultrasound has been used as a surrogate marker of fetal hypoxia. However, Doppler evaluation cannot be performed continuously. We have evaluated the performance of a miniaturized multiparametric sensor aiming to evaluate tissular oxygen and pH changes continuously in an umbilical cord occlusion (UCO) sheep model. The electrochemical sensors were inserted in fetal hindlimb skeletal muscle and electrochemical signals were recorded. Fetal hemodynamic changes and metabolic status were also monitored during the experiment. Additionally, histological assessment of the tissue surrounding the sensors was performed. Both electrochemical sensors detected the pO2 and pH changes induced by the UCO and these changes were correlated with hemodynamic parameters as well as with pH and oxygen content in the blood. Finally, histological assessment revealed no signs of alteration on the same day of insertion. This study provides the first evidence showing the application of miniaturized multiparametric electrochemical sensors detecting changes in oxygen and pH in skeletal muscular tissue in a fetal sheep model.

JTD Keywords: continuous monitoring of acid-base status, diagnosis, doppler, electrochemical sensors, growth restriction, high-risk pregnancies, human-fetus, management, responses, tissue ph, Continuous monitoring of acid-base status, Electrochemical sensors, High-risk pregnancies, Umbilical cord occlusion, Umbilical-cord occlusion


Mallafré-Muro, C, Llambrich, M, Cumeras, R, Pardo, A, Brezmes, J, Marco, S, Gumà, J, (2021). Comprehensive volatilome and metabolome signatures of colorectal cancer in urine: A systematic review and meta‐analysis Cancers 13, 2534

To increase compliance with colorectal cancer screening programs and to reduce the recommended screening age, cheaper and easy non‐invasiveness alternatives to the fecal immunochemical test should be provided. Following the PRISMA procedure of studies that evaluated the metabolome and volatilome signatures of colorectal cancer in human urine samples, an exhaustive search in PubMed, Web of Science, and Scopus found 28 studies that met the required criteria. There were no restrictions on the query for the type of study, leading to not only colorectal cancer samples versus control comparison but also polyps versus control and prospective studies of surgical effects, CRC staging and comparisons of CRC with other cancers. With this systematic review, we identified up to 244 compounds in urine samples (3 shared compounds between the volatilome and metabolome), and 10 of them were relevant in more than three articles. In the meta-analysis, nine studies met the criteria for inclusion, and the results combining the case‐control and the pre‐/post‐surgery groups, eleven compounds were found to be relevant. Four upregulated metabolites were identified, 3‐hydroxybutyric acid, L‐dopa, L‐histidinol, and N1, N12‐ diacetylspermine and seven downregulated compounds were identified, pyruvic acid, hydroquinone, tartaric acid, and hippuric acid as metabolites and butyraldehyde, ether, and 1,1,6‐ trimethyl‐1,2‐dihydronaphthalene as volatiles.

JTD Keywords: biomarkers, breast, chromatography, colorectal cancer, diagnosis, markers, meta-analysis, metabolomics, metabonomics, n-1,n-12-diacetylspermine, nucleosides, systematic review, urine, validation, volatilomics, Colorectal cancer, Early-stage, Metabolomics, Meta‐analysis, Systematic review, Urine, Volatilomics


Hirsch, T, Barthel, M, Aarts, P, Chen, YA, Freivogel, S, Johnson, MJ, Jones, TA, Jongsma, MLA, Maier, M, Punt, D, Sterr, A, Wolf, SL, Heise, KF, (2021). A First Step Toward the Operationalization of the Learned Non-Use Phenomenon: A Delphi Study Neurorehabilitation And Neural Repair 35, 383-392

© The Author(s) 2021. Background: The negative discrepancy between residual functional capacity and reduced use of the contralesional hand, frequently observed after a brain lesion, has been termed Learned Non-Use (LNU) and is thought to depend on the interaction of neuronal mechanisms during recovery and learning-dependent mechanisms. Objective: Albeit the LNU phenomenon is generally accepted to exist, currently, no transdisciplinary definition exists. Furthermore, although therapeutic approaches are implemented in clinical practice targeting LNU, no standardized diagnostic routine is described in the available literature. Our objective was to reach consensus regarding a definition as well as synthesize knowledge about the current diagnostic procedures. Methods: We used a structured group communication following the Delphi method among clinical and scientific experts in the field, knowledge from both, the work with patient populations and with animal models. Results: Consensus was reached regarding a transdisciplinary definition of the LNU phenomenon. Furthermore, the mode and strategy of the diagnostic process, as well as the sources of information and outcome parameters relevant for the clinical decision making, were described with a wide range showing the current lack of a consistent universal diagnostic approach. Conclusions: The need for the development of a structured diagnostic procedure and its implementation into clinical practice is emphasized. Moreover, it exists a striking gap between the prevailing hypotheses regarding the mechanisms underlying the LNU phenomenon and the actual evidence. Therefore, basic research is needed to bridge between bedside and bench and eventually improve clinical decision making and further development of interventional strategies beyond the field of stroke rehabilitation.

JTD Keywords: diagnosis, experience-dependent non-use, perceptual disorders, rehabilitation, sensorimotor learning, Diagnosis, Experience-dependent non-use, Perceptual disorders, Rehabilitation, Sensorimotor learning


de la Serna, E, Arias-Alpízar, K, Borgheti-Cardoso, LN, Sanchez-Cano, A, Sulleiro, E, Zarzuela, F, Bosch-Nicolau, P, Salvador, F, Molina, I, Ramírez, M, Fernàndez-Busquets, X, Sánchez-Montalvá, A, Baldrich, E, (2021). Detection of Plasmodium falciparum malaria in 1 h using a simplified enzyme-linked immunosorbent assay Analytica Chimica Acta 1152, 338254

© 2021 Elsevier B.V. Malaria is a parasitic disease caused by protists of the genus Plasmodium, which are transmitted to humans through the bite of infected female Anopheles mosquitoes. Analytical methodologies and efficient drugs exist for the early detection and treatment of malaria, and yet this disease continues infecting millions of people and claiming several hundred thousand lives each year. One of the reasons behind this failure to control the disease is that the standard method for malaria diagnosis, microscopy, is time-consuming and requires trained personnel. Alternatively, rapid diagnostic tests, which have become common for point-of-care testing thanks to their simplicity of use, tend to be insufficiently sensitive and reliable, and PCR, which is sensitive, is too complex and expensive for massive population screening. In this work, we report a sensitive simplified ELISA for the quantitation of Plasmodium falciparum lactate dehydrogenase (Pf-LDH), which is capable of detecting malaria in 45–60 min. Assay development was founded in the selection of high-performance antibodies, implementation of a poly-horseradish peroxidase (polyHRP) signal amplifier, and optimization of whole-blood sample pre-treatment. The simplified ELISA achieved limits of detection (LOD) and quantification (LOQ) of 0.11 ng mL−1 and 0.37 ng mL−1, respectively, in lysed whole blood, and an LOD comparable to that of PCR in Plasmodium in vitro cultures (0.67 and 1.33 parasites μL−1 for ELISA and PCR, respectively). Accordingly, the developed immunoassay represents a simple and effective diagnostic tool for P. falciparum malaria, with a time-to-result of <60 min and sensitivity similar to the reference PCR, but easier to implement in low-resource settings.

JTD Keywords: malaria quantitative diagnosis, plasmodium culture, plasmodium ldh, polyhrp signal amplifier, simplified elisa, Malaria quantitative diagnosis, Plasmodium culture, Plasmodium ldh, Polyhrp signal amplifier, Simplified elisa


Pérez-López, B, Mir, M, (2021). Commercialized diagnostic technologies to combat SARS-CoV2: Advantages and disadvantages Talanta 225, 121898

© 2020 Elsevier B.V. The current situation of the Covid-19 pandemic is indicated by a huge number of infections, high lethality, and rapid spread. These circumstances have stopped the activity of almost the entire world, affecting severely the global economy. A rapid diagnosis of the Covid-19 and a generalized testing protocol is essential to fight against the pandemic and to maintain health control in the population. Principal biosensing and diagnostic technologies used to monitor the spread of the SARS-CoV-2 are based on specific genomic analysis and rapid immune tests, both with different technology platforms that include advantages and disadvantages. Most of the in vitro diagnosis companies are competing to be the first on validating under different regulations their technology for placing their platforms for Covid-19 detection as fast as possible in this big international market. A comprehensive analysis of the commercialized technologies for the genomic based sensing and the antibody/antigen detection methods devoted to Covid-19 diagnosis is described in this review, which have been detailed and listed under different countries regulations. The effectiveness of the described technologies throughout the different stages of the disease and a critical comparison of the emerging technologies in the market to counterattack this pandemic have been discussed.

JTD Keywords: covid-19, in vitro diagnosis (ivd), lateral flow immunoassay, point of care (poc), reverse transcriptase polymerase chain reaction (rt-pcr), sars-cov-2, Covid-19, In vitro diagnosis (ivd), Lateral flow immunoassay, Point of care (poc), Reverse transcriptase polymerase chain reaction (rt-pcr), Sars-cov-2


Marrugo-Ramírez, J, Rodríguez-Núñez, M, Marco, MP, Mir, M, Samitier, J, (2021). Kynurenic Acid Electrochemical Immunosensor: Blood-Based Diagnosis of Alzheimer's Disease Biosensors 11, 20

Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by a functional deterioration of the brain. Currently, there are selected biomarkers for its diagnosis in cerebrospinal fluid. However, its extraction has several disadvantages for the patient. Therefore, there is an urgent need for a detection method using sensitive and selective blood-based biomarkers. Kynurenic acid (KYNA) is a potential biomarker candidate for this purpose. The alteration of the KYNA levels in blood has been related with inflammatory processes in the brain, produced as a protective function when neurons are damaged. This paper describes a novel electrochemical immunosensor for KYNA detection, based on successive functionalization multi-electrode array. The resultant sensor was characterized by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The proposed biosensor detects KYNA within a linear calibration range from 10 pM to 100 nM using CA and EIS, obtaining a limit of detection (LOD) of 16.9 pM and 37.6 pM in buffer, respectively, being the lowest reported LOD for this biomarker. Moreover, to assess our device closer to the real application, the developed immunosensor was also tested under human serum matrix, obtaining an LOD of 391.71 pM for CA and 278.8 pM for EIS with diluted serum.

JTD Keywords: alzheimer’s disease (ad), blood analysis, chronoamperometry (ca), electrochemical biosensor, electrochemical impedance spectroscopy (eis), immunosensor, in vitro diagnosis (ivd), kynurenic acid (kyna), Alzheimer’s disease (ad), Blood analysis, Chronoamperometry (ca), Electrochemical biosensor, Electrochemical impedance spectroscopy (eis), Immunosensor, In vitro diagnosis (ivd), Kynurenic acid (kyna), Point of care diagnosis (poc)


Ruiz-Vega, G., Arias-Alpízar, K., de la Serna, E., Borgheti-Cardoso, L. N., Sulleiro, E., Molina, I., Fernàndez-Busquets, X., Sánchez-Montalvá, A., del Campo, F. J., Baldrich, E., (2020). Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes Biosensors and Bioelectronics 150, 111925

Malaria, a parasitic infection caused by Plasmodium parasites and transmitted through the bite of infected female Anopheles mosquitos, is one of the main causes of mortality in many developing countries. Over 200 million new infections and nearly half a million deaths are reported each year, and more than three billion people are at risk of acquiring malaria worldwide. Nevertheless, most malaria cases could be cured if detected early. Malaria eradication is a top priority of the World Health Organisation. However, achieving this goal will require mass population screening and treatment, which will be hard to accomplish with current diagnostic tools. We report an electrochemical point-of-care device for the fast, simple and quantitative detection of Plasmodium falciparum lactate dehydrogenase (PfLDH) in whole blood samples. Sample analysis includes 5-min lysis to release intracellular parasites, and stirring for 5 more min with immuno-modified magnetic beads (MB) along with an immuno-modified signal amplifier. The rest of the magneto-immunoassay, including sample filtration, MB washing and electrochemical detection, is performed at a disposable paper electrode microfluidic device. The sensor provides PfLDH quantitation down to 2.47 ng mL−1 in spiked samples and for 0.006–1.5% parasitemias in Plasmodium-infected cultured red blood cells, and discrimination between healthy individuals and malaria patients presenting parasitemias >0.3%. Quantitative malaria diagnosis is attained with little user intervention, which is not achieved by other diagnostic methods.

JTD Keywords: Electrochemical magneto-immunosensor, Malaria quantitative diagnosis, Paper microfluidic electrode, Plasmodium LDH, Point-of-care (POC) testing


Mencattini, A., Di Giuseppe, D., D'Orazio, M., Rizzuto, V., Manu Pereira, M. M., Colomba Comes, M., Lopez-Martinez, M. J., Samitier, J., Martinelli, E., (2020). A microfluidic device for shape measurement in red blood cells (RBCs) IEEE International Workshop on Medical Measurement and Applications (MEMEA) , IEEE (Bari, Italy) , 1-5

Modern optical sensors coupled with time-lapse microscopy devices and dedicated software tools allow the miniaturization of laboratories for biological experiments leading to the Organ-On-Chip (OoC) framework. OoCs allow performing massive measurements on a large number of cells under the assumption of reproducibility conditions, permitting to investigate the cell dynamics in terms of motility and shape changes over time. In this work, we present the OoC platform used in a preliminary study of the Rare Haemolytic Anaemia (RHA) disease, a group of rare diseases characterized by haemolysis, which is the premature loss of red blood cells (RBCs). Preliminary results demonstrate the effectiveness of shape measurement for the diagnosis of RHA.

JTD Keywords: Anaemia diagnosis, Cell tracking, Plasticity measurement, Time-lapse microscopy


Blanco-Almazán, Dolores, Groenendaal, Willemijn, Catthoor, Francky, Jané, Raimon, (2019). Chest movement and respiratory volume both contribute to thoracic bioimpedance during loaded breathing Scientific Reports 9, (1), 20232

Bioimpedance has been widely studied as alternative to respiratory monitoring methods because of its linear relationship with respiratory volume during normal breathing. However, other body tissues and fluids contribute to the bioimpedance measurement. The objective of this study is to investigate the relevance of chest movement in thoracic bioimpedance contributions to evaluate the applicability of bioimpedance for respiratory monitoring. We measured airflow, bioimpedance at four electrode configurations and thoracic accelerometer data in 10 healthy subjects during inspiratory loading. This protocol permitted us to study the contributions during different levels of inspiratory muscle activity. We used chest movement and volume signals to characterize the bioimpedance signal using linear mixed-effect models and neural networks for each subject and level of muscle activity. The performance was evaluated using the Mean Average Percentage Errors for each respiratory cycle. The lowest errors corresponded to the combination of chest movement and volume for both linear models and neural networks. Particularly, neural networks presented lower errors (median below 4.29%). At high levels of muscle activity, the differences in model performance indicated an increased contribution of chest movement to the bioimpedance signal. Accordingly, chest movement contributed substantially to bioimpedance measurement and more notably at high muscle activity levels.

JTD Keywords: Diagnosis, Health care


Urbán, P., Fernàndez-Busquets, X., (2014). Nanomedicine against malaria Current Medicinal Chemistry , 21, (5), 605-629

Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium sp. The clinical, social and economic burden of malaria has led for the last 100 years to several waves of serious efforts to reach its control and eventual eradication, without success to this day. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial drugs exclusively to Plasmodium-infected cells. Different types of encapsulating structure, targeting molecule, and antimalarial compound will be discussed for the assembly of Trojan horse nanocapsules capable of targeting with complete specificity diseased cells and of delivering inside them their antimalarial cargo with the objective of eliminating the parasite with a single dose. Nanotechnology can also be applied to the discovery of new antimalarials through single-molecule manipulation approaches for the identification of novel drugs targeting essential molecular components of the parasite. Finally, methods for the diagnosis of malaria can benefit from nanotools applied to the design of microfluidic-based devices for the accurate identification of the parasite's strain, its precise infective load, and the relative content of the different stages of its life cycle, whose knowledge is essential for the administration of adequate therapies. The benefits and drawbacks of these nanosystems will be considered in different possible scenarios, including cost-related issues that might be hampering the development of nanotechnology-based medicines against malaria with the dubious argument that they are too expensive to be used in developing areas.

JTD Keywords: Dendrimers, Liposomes, Malaria diagnosis, Nanobiosensors, Nanoparticles, Plasmodium, Polymers, Targeted drug delivery


Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Analysis of heart rate variability in elderly patients with chronic heart failure during periodic breathing CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 991-994

Assessment of the dynamic interactions between cardiovascular signals can provide valuable information that improves the understanding of cardiovascular control. Heart rate variability (HRV) analysis is known to provide information about the autonomic heart rate modulation mechanism. Using the HRV signal, we aimed to obtain parameters for classifying patients with and without chronic heart failure (CHF), and with periodic breathing (PB), non-periodic breathing (nPB), and Cheyne-Stokes respiration (CSR) patterns. An electrocardiogram (ECG) and a respiratory flow signal were recorded in 36 elderly patients: 18 patients with CHF and 18 patients without CHF. According to the clinical criteria, the patients were classified into the follow groups: 19 patients with nPB pattern, 7 with PB pattern, 4 with Cheyne-Stokes respiration (CSR), and 6 non-classified patients (problems with respiratory signal). From the HRV signal, parameters in the time and frequency domain were calculated. Frequency domain parameters were the most discriminant in comparisons of patients with and without CHF: PTot (p = 0.02), PLF (p = 0.022) and fpHF (p = 0.021). For the comparison of the nPB vs. CSR patients groups, the best parameters were RMSSD (p = 0.028) and SDSD (p = 0.028). Therefore, the parameters appear to be suitable for enhanced diagnosis of decompensated CHF patients and the possibility of developed periodic breathing and a CSR pattern.

JTD Keywords: cardiovascular system, diseases, electrocardiography, frequency-domain analysis, geriatrics, medical signal processing, patient diagnosis, pneumodynamics, signal classification, Cheyne-Stokes respiration patterns, ECG, autonomic heart rate modulation mechanism, cardiovascular control, cardiovascular signals, chronic heart failure, decompensated CHF patients, dynamic interaction assessment, elderly patients, electrocardiogram, enhanced diagnosis, frequency domain parameters, heart rate variability analysis, patient classification, periodic breathing, respiratory flow signal recording, Electrocardiography, Frequency modulation, Frequency-domain analysis, Heart rate variability, Senior citizens, Standards


Correa, R., Laciar, E., Arini, P., Jané, R., (2010). Analysis of QRS loop in the Vectorcardiogram of patients with Chagas' disease Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2561-2564

In the present work, we have studied the QRS loop in the Vectorcardiogram (VCG) of 95 chronic chagasic patients classified in different groups (I, II and III) according to their degree of myocardial damage. For comparison, the VCGs of 11 healthy subjects used as control group (Group O) were also examined. The QRS loop was obtained for each patient from the XYZ orthogonal leads of their High-Resolution Electrocardiogram (HRECG) records. In order to analyze the variations of QRS loop in each detected beat, it has been proposed in this study the following vectorcardiographic parameters a) Maximum magnitude of the cardiac depolarization vector, b) Volume, c) Area of QRS loop, d) Ratio between the Area and Perimeter, e) Ratio between the major and minor axes of the QRS loop and f) QRS loop Energy. It has been found that one or more indexes exhibited statistical differences (p<0.05) between groups 0-II, O-III, I-II, I-III and II-III. We concluded that the proposed method could be use as complementary diagnosis technique to evaluate the degree of myocardial damage in chronic chagasic patients.

JTD Keywords: Practical, Experimental/ bioelectric phenomena, Diseases, Electrocardiography, Medical signal, Processing/ QRS loop, Vectorcardiogram, Cardiac depolarization vector, Myocardial damage, Chagas disease, Complementary diagnosis technique, High-resolution electrocardiogram


Morgenstern, C., Schwaibold, M., Randerath, W., Bolz, A., Jané, R., (2010). Automatic non-invasive differentiation of obstructive and central hypopneas with nasal airflow compared to esophageal pressure Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 6142-6145

The differentiation of obstructive and central respiratory events is a major challenge in the diagnosis of sleep disordered breathing. Esophageal pressure (Pes) measurement is the gold-standard method to identify these events but its invasiveness deters its usage in clinical routine. Flattening patterns appear in the airflow signal during episodes of inspiratory flow limitation (IFL) and have been shown with invasive techniques to be useful to differentiate between central and obstructive hypopneas. In this study we present a new method for the automatic non-invasive differentiation of obstructive and central hypopneas solely with nasal airflow. An overall of 36 patients underwent full night polysomnography with systematic Pes recording and a total of 1069 hypopneas were manually scored by human experts to create a gold-standard annotation set. Features were automatically extracted from the nasal airflow signal to train and test our automatic classifier (Discriminant Analysis). Flattening patterns were non-invasively assessed in the airflow signal using spectral and time analysis. The automatic non-invasive classifier obtained a sensitivity of 0.71 and an accuracy of 0.69, similar to the results obtained with a manual non-invasive classification algorithm. Hence, flattening airflow patterns seem promising for the non-invasive differentiation of obstructive and central hypopneas.

JTD Keywords: Practical, Experimental/ biomedical measurement, Feature extraction, Flow measurement, Medical disorders, Medical signal processing, Patient diagnosis, Pneumodynamics, Pressure measurement, Signal classification, Sleep, Spectral analysis/ automatic noninvasive differentiation, Obstructive hypopnea, Central hypopnea, Inspiratory flow limitation, Nasal airflow, Esophageal pressure, Polysomnography, Feature extraction, Discriminant analysis, Spectral analysis


Padilla, M., Perera, A., Montoliu, I., Chaudry, A., Persaud, K., Marco, S., (2010). Fault detection, identification, and reconstruction of faulty chemical gas sensors under drift conditions, using Principal Component Analysis and Multiscale-PCA Theoretical or Mathematical; Experimental The 2010 International Joint Conference on Neural Networks (IJCNN 2010) , IEEE, Piscataway, NJ, USA (Barcelona, Spain) , 7 pp.

Statistical methods like Principal Components Analysis (PCA) or Partial Least Squares (PLS) and multiscale approaches, have been reported to be very useful in the task of fault diagnosis of malfunctioning sensors for several types of faults. In this work, we compare the performance of PCA and Multiscale-PCA on a fault based on a change of sensor sensitivity. This type of fault affects chemical gas sensors and it is one of the effects of the sensor poisoning. These two methods will be applied on a dataset composed by the signals of 17 conductive polymer gas sensors, measuring three analytes at several concentration levels during 10 months. Therefore, additionally to performance's comparison, both method's stability along the time will be tested. The comparison between both techniques will be made regarding three aspects; detection, identification of the faulty sensors and correction of faulty sensors response.

JTD Keywords: Fault diagnosis, Gas sensors, Principal component analysis


Leder, R. S., Schlotthauer, G., Penzel, T., Jané, R., (2010). The natural history of the sleep and respiratory engineering track at EMBC 1988 to 2010 Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 288-291

Sleep science and respiratory engineering as medical subspecialties and research areas grew up side-by-side with biomedical engineering. The formation of EMBS in the 1950's and the discovery of REM sleep in the 1950's led to parallel development and interaction of sleep and biomedical engineering in diagnostics and therapeutics.

JTD Keywords: Practical/ biomedical equipment, Biomedical measurement, Patient diagnosis, Patient monitoring, Patient treatment, Pneumodynamics, Sleep/ sleep engineering, Respiratory engineering, Automatic sleep analysis, Automatic sleep interpretation systems, Breathing, Biomedical, Engineering, Diagnostics, Therapeutics, REM sleep, Portable, Measurement, Ambulatory measurement, Monitoring


Mesquita, J., Fiz, J. A., Solà, J., Morera, J., Jané, R., (2010). Regular and non regular snore features as markers of SAHS Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 6138-6141

Sleep Apnea-Hypopnea Syndrome (SAHS) diagnosis is still done with an overnight multi-channel polysomnography. Several efforts are being made to study profoundly the snore mechanism and discover how it can provide an opportunity to diagnose the disease. This work introduces the concept of regular snores, defined as the ones produced in consecutive respiratory cycles, since they are produced in a regular way, without interruptions. We applied 2 thresholds (TH/sub adaptive/ and TH/sub median/) to the time interval between successive snores of 34 subjects in order to select regular snores from the whole all-night snore sequence. Afterwards, we studied the effectiveness that parameters, such as time interval between successive snores and the mean intensity of snores, have on distinguishing between different levels of SAHS severity (AHI (Apnea-Hypopnea Index)<5h/sup -1/, AHI<10 h/sup -1/, AHI<15h/sup -1/, AHI<30h/sup -1/). Results showed that TH/sub adaptive/ outperformed TH/sub median/ on selecting regular snores. Moreover, the outcome achieved with non-regular snores intensity features suggests that these carry key information on SAHS severity.

JTD Keywords: Practical, Experimental/ acoustic signal processing, Bioacoustics, Biomedical measurement, Diseases, Feature extraction, Medical signal processing, Patient diagnosis, Pneumodynamics, Sleep/ nonregular snore features, SAHS markers, Sleep apnea hypopnea syndrome, Overnight multichannel polysomnography, Snore mechanism