by Keyword: Steroid

Tort, N., Salvador, J. P., Eritja, R., Poch, M., Martinez, E., Samitier, J., Marco, M. P., (2009). Fluorescence site-encoded DNA addressable hapten microarray for anabolic androgenic steroids Trac-Trends in Analytical Chemistry , 28, (6), 718-728

We report a new strategy for immunochemical screening of small organic molecules based on the use of a hapten microarray. Using DNA-directed immobilization strategies, we have been able to convert a DNA chip into a hapten microarray by taking advantage of all the benefits of the structural and electrostatic homogeneous properties of DNA. The hapten microarray uses hapten-oligonucleotide probes instead of proteins, avoiding the limitations of preparing stochiometrically-defined protein-oligonucleotide bioconjugates. As proof of concept, we show here the development of a microarray for analysis of anabolic androgenic steroids. The microchip is able to detect several illegal substances with sufficient detectability to be used as a screening method, according to the regulations of the World Anti-Doping Agency for sport and the European Commision for food safety. The results that we show corroborate the universal possibilities of the DNA chip, and, in this case, they open the way to develop hapten microarrays for the immunochemical analysis of small organic molecules.

JTD Keywords: Anti-doping, DNA chip, DNA-directed immobilization (DDI), Fluorescence, Food safety, Hapten microarray, Immunochemical screening, Proof of concept, Small organic molecule, Steroid

Calvo, D., Salvador, J. P., Tort, N., Centi, F., Marco, M. P., Marco, S., (2009). Multidetection of anabolic androgenic steroids using immunoarrays and pattern recognition techniques Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 547-550

A first step towards the multidetection of anabolic androgenic steroids by Enzyme-linked immunosorbent assays (ELISA) has been performed in this study. This proposal combines an array of classical ELISA assays with different selectivities and multivariate data analysis techniques. Data has been analyzed by principal component analysis in conjunction with a k-nearest line classifier has been used. This proposal allows to detect simultaneously four different compounds in the range of concentration from 10(-1.5) to 10(3) mM with a total rate of 90.6% of correct detection.

JTD Keywords: Immunoarray, Anabolic androgenic steroid, Multidetection, Pattern recognition, K-nearlest line