by Keyword: artemisinin

Fonte M, Fontinha D, Moita D, Caño-Prades O, Avalos-Padilla Y, Fernàndez-Busquets X, Prudêncio M, Gomes P, Teixeira C, (2023). New 4-(N-cinnamoylbutyl)aminoacridines as potential multi-stage antiplasmodial leads European Journal Of Medicinal Chemistry 258, 115575

A novel family of 4-aminoacridine derivatives was obtained by linking this heteroaromatic core to different trans-cinnamic acids. The 4-(N-cinnamoylbutyl)aminoacridines obtained exhibited in vitro activity in the low- or sub-micromolar range against (i) hepatic stages of Plasmodium berghei, (ii) erythrocytic forms of Plasmodium falciparum, and (iii) early and mature gametocytes of Plasmodium falciparum. The most active compound, having a meta-fluorocinnamoyl group linked to the acridine core, was 20- and 120-fold more potent, respectively, against the hepatic and gametocyte stages of Plasmodium infection than the reference drug, primaquine. Moreover, no cytotoxicity towards mammalian and red blood cells at the concentrations tested was observed for any of the compounds under investigation. These novel conjugates represent promising leads for the development of new multi-target antiplasmodials.Copyright © 2023 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

JTD Keywords: agents, analogs, antimalarial, artemisinin, blood-stage, cinnamic acid, gametocyte, hybrid, liver-stage, malaria, multi-target, plasmodium-falciparum, primaquine, quinacrine, resistance, Acridine, Antimalarial, Blood-stage, Cinnamic acid, Cinnamic acid-derivatives, Gametocyte, Hybrid, Liver-stage, Multi-target

Biosca, A, Ramirez, M, Gomez-Gomez, A, Lafuente, A, Iglesias, V, Pozo, OJ, Imperial, S, Fernandez-Busquets, X, (2022). Characterization of Domiphen Bromide as a New Fast-Acting Antiplasmodial Agent Inhibiting the Apicoplastidic Methyl Erythritol Phosphate Pathway Pharmaceutics 14,

The evolution of resistance by the malaria parasite to artemisinin, the key component of the combination therapy strategies that are at the core of current antimalarial treatments, calls for the urgent identification of new fast-acting antimalarials. The apicoplast organelle is a preferred target of antimalarial drugs because it contains biochemical processes absent from the human host. Fosmidomycin is the only drug in clinical trials targeting the apicoplast, where it inhibits the methyl erythritol phosphate (MEP) pathway. Here, we characterized the antiplasmodial activity of domiphen bromide (DB), another MEP pathway inhibitor with a rapid mode of action that arrests the in vitro growth of Plasmodium falciparum at the early trophozoite stage. Metabolomic analysis of the MEP pathway and Krebs cycle intermediates in 20 mu M DB-treated parasites suggested a rapid activation of glycolysis with a concomitant decrease in mitochondrial activity, consistent with a rapid killing of the pathogen. These results present DB as a model compound for the development of new, potentially interesting drugs for future antimalarial combination therapies.

JTD Keywords: antibiotics, antimalarial drugs, domiphen bromide, malaria, plasmodium falciparum, Antibiotics, Antimalarial drugs, Antimalarial-drug, Artemisinin, Combination therapies, Domiphen bromide, Intraerythrocytic stages, Isoprenoid biosynthesis, Malaria, Methyl erythritol phosphate pathway, Nonmevalonate pathway, Plasmodium falciparum, Plasmodium-falciparum apicoplast, Red-blood-cells, Targeted delivery

Caddeo C, Gabriele M, Nácher A, Fernàndez-Busquets X, Valenti D, Maria Fadda A, Pucci L, Manconi M, (2021). Resveratrol and artemisinin eudragit-coated liposomes: A strategy to tackle intestinal tumors International Journal Of Pharmaceutics 592, 120083

© 2020 Elsevier B.V. Resveratrol and artemisinin, two naturally occurring compounds with a wide range of biological activities, have been reported to exert antitumor effects against several types of cancer. In this work, Eudragit-coated liposomes were developed to safely transport resveratrol and artemisinin through the gastrointestinal tract and target the intestine. The physico-chemical properties of the Eudragit-coated liposomes were assessed by light scattering and cryogenic transmission electron microscopy. Nanosized (around 100 nm), spherical or elongated, unilamellar vesicles were produced. The protective effect of the Eudragit coating was confirmed by assessing the physical stability of the vesicles in fluids mimicking the gastrointestinal environment. Furthermore, the vesicles were found to exert a pro-oxidant activity in intestinal adenocarcinoma cells, which resulted in a marked mortality due to the generation of reactive oxygen species (ROS). A time- and dose-dependent cell growth inhibitory effect was detected, with elevated ROS levels when resveratrol and artemisinin were combined. Therefore, the proposed formulations may represent a valuable means to counteract intestinal tumor growth.

JTD Keywords: antitumor, artemisinin, eudragit, intestinal delivery, liposomes, Antitumor, Artemisinin, Eudragit, Intestinal delivery, Liposomes, Resveratrol