DONATE

Publications

by Keyword: direct ink writing

Garcia-de-Albeniz, Nerea, Hodasova, Ludmila, Buxadera-Palomero, Judit, Jimenez-Pique, Emilio, Ginebra, Maria-Pau, Llanes, Luis, Aleman, Carlos, Armelin, Elaine, Mas-Moruno, Carles, Fargas, Gemma, (2024). Peptidic biofunctionalization of infiltrated zirconia scaffolds produced by direct ink writing Ceramics International 50, 36993-37001

Porous zirconia scaffolds manufactured using polymer-infiltrated ceramic network (PICN) and additive manufacturing technologies are emerging as promising alternatives to traditional ceramic materials in dental restorations. However, incomplete osseointegration and bacterial infections still represent challenges for the long-term performance of this new composite material. To address this, the present study aims to investigate the effect of peptide biofunctionalization on the biological performance of infiltrated zirconia scaffold surfaces. The samples used in the work consisted of a 3D-printed zirconia scaffold infiltrated with a dimethacrylate copolymer. Surface biofunctionalization was achieved using a synthetic platform containing the cell-adhesive sequence RGD and the antibacteria LF1-11 peptide (RGD-LF). The attachment of the molecule was characterized through fluorescence confocal laser scanning microscopy and X-ray photoelectron spectroscopy. The biological performance of the samples was evaluated in terms of human mesenchymal stem cell adhesion and early attachment of S. aureus. The physicochemical characterization verified the successful anchoring of the biomolecule to the surface, leading to a peptide density of 288 pmol/cm2. 2 . The biological assays confirmed the potential of RGD-LF to improve cell adhesion and spreading. In this sense, the average cell area increased fourfold in the biofunctionalized surface. Regarding bacterial adhesion, it was demonstrated that RGD-LF significantly inhibited it, reducing early adhesion by half compared to the untreated surface. Overall, this study provides valuable insights into the biofunctionalization of polymer-infiltrated 3D scaffolds for the development of cell-instructive and antibacterial surfaces tailored for dental applications.

JTD Keywords: Antibacteria, Biocompatibility, Cell adhesion, Composite, Dental ceramics, Direct ink writing, Fabrication, Infiltrated zirconia scaffolds, Mechanical-properties, Peptide biofunctionalization, Picn material, Strength, Surface, Topograph, Wear behavior


del-Mazo-Barbara, L, Ginebra, MP, (2021). Rheological characterisation of ceramic inks for 3D direct ink writing: A review Journal Of The European Ceramic Society 41, 18-33

3D printing is a competitive manufacturing technology, which has opened up new possibilities for the fabrication of complex ceramic structures and customised parts. Extrusion-based technologies, also known as direct ink writing (DIW) or robocasting, are amongst the most used for ceramic materials. In them, the rheological properties of the ink play a crucial role, determining both the extrudability of the paste and the shape fidelity of the printed parts. However, comprehensive rheological studies of printable ceramic inks are scarce and may be difficult to understand for non-specialists. The aim of this review is to provide an overview of the main types of ceramic ink formulations developed for DIW and a detailed description of the more relevant rheological tests for assessing the printability of ceramic pastes. Moreover, the key rheological parameters are identified and linked to printability aspects, including the values reported in the literature for different ink compositions.

JTD Keywords: 3-dimensional structures, behavior, deposition, direct ink writing, freeform fabrication, gelation, glass scaffolds, mechanical-properties, printability, rheology, robocasting, suspensions, 3d printing, Direct ink writing, Phosphate scaffolds, Printability, Rheology, Robocasting


Raymond, Y, Thorel, E, Liversain, M, Riveiro, A, Pou, J, Ginebra, MP, (2021). 3D printing non-cylindrical strands: Morphological and structural implications Additive Manufacturing 46, 102129

Conventional direct ink writing uses circular nozzles and, therefore, results in cylindrical strands. 3D printing with non-circular nozzles adds new degrees of freedom to this versatile technology, and allows obtaining structures with higher specific surface area or even introducing concave surfaces in the printed architecture. This is an enticing prospect for countless applications, including tissue engineering, chemical reaction catalysts, water evaporators and electrochemical energy storage devices. Despite this, it has been hardly explored by the 3D-printing community. Herein, we develop for the first time 3D printed structures with complex filament section morphologies using a custom-made modular nozzle and a self-setting ceramic ink. The fast elastic recovery of the ink allows obtaining good shape fidelity in the printed filaments, permitting the creation of intricate surfaces with up to 30% concavity and increasing up to 2.5 times the specific surface area compared to cylindrical strands. The use of non-circular nozzles introduces some specific constraints in the printing process. The geometry of the nozzle determines the stable printing directions, and nozzle orientation becomes a critical parameter to achieve a stable printing. Strand torsion, a phenomenon that remains unnoticed with circular nozzles, may result in relevant changes in the geometrical features of the printed structures.

JTD Keywords: calcium phosphate, ceramic, ceramics, flow, geometry, microextrusion, robocasting, Calcium phosphate, Ceramic, Direct ink writing, Microextrusion, Robocasting, Scaffolds


Vidal, E., Torres, D., Guillem-Marti, J., Scionti, G., Manero, J. M., Ginebra, M. P., Rodríguez, D., Rupérez, E., (2020). Titanium scaffolds by direct ink writing: Fabrication and functionalization to guide osteoblast behavior Metals 10, (9), 1156

Titanium (Ti) and Ti alloys have been used for decades for bone prostheses due to its mechanical reliability and good biocompatibility. However, the high stiffness of Ti implants and the lack of bioactivity are pending issues that should be improved to minimize implant failure. The stress shielding effect, a result of the stiffness mismatch between titanium and bone, can be reduced by introducing a tailored structural porosity in the implant. In this work, porous titanium structures were produced by direct ink writing (DIW), using a new Ti ink formulation containing a thermosensitive hydrogel. A thermal treatment was optimized to ensure the complete elimination of the binder before the sintering process, in order to avoid contamination of the titanium structures. The samples were sintered in argon atmosphere at 1200 °C, 1300 °C or 1400 °C, resulting in total porosities ranging between 72.3% and 77.7%. A correlation was found between the total porosity and the elastic modulus of the scaffolds. The stiffness and yield strength were similar to those of cancellous bone. The functionalization of the scaffold surface with a cell adhesion fibronectin recombinant fragment resulted in enhanced adhesion and spreading of osteoblastic-like cells, together with increased alkaline phosphatase expression and mineralization.

JTD Keywords: Direct ink writing, Osseointegration, Recombinant protein, Thermoresponsive binder, Titanium, Titanium scaffold


Raymond, Santiago, Maazouz, Yassine, Montufar, Edgar B., Perez, Roman A., González, Borja, Konka, Joanna, Kaiser, Jozef, Ginebra, Maria-Pau, (2018). Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks Acta Biomaterialia 75, 451-462

Direct ink writing (DIW) techniques open up new possibilities for the fabrication of patient-specific bone grafts. Self-setting calcium phosphate inks, which harden at low temperature, allow obtaining nanostructured scaffolds with biomimetic properties and enhanced bioactivity. However, the slow hardening kinetics hampers the translation to the clinics. Different hydrothermal treatments for the consolidation of DIW scaffolds fabricated with an α-tricalcium phosphate /pluronic F127 ink were explored, comparing them with a biomimetic treatment. Three different scaffold architectures were analysed. The hardening process, associated to the conversion of α-tricalcium phosphate to hydroxyapatite was drastically accelerated by the hydrothermal treatments, reducing the time for complete reaction from 7 days to 30 minutes, while preserving the scaffold architectural integrity and retaining the nanostructured features. β-tricalcium phosphate was formed as a secondary phase, and a change of morphology from plate-like to needle-like crystals in the hydroxyapatite phase was observed. The binder was largely released during the treatment. The hydrothermal treatment resulted in a 30% reduction of the compressive strength, associated to the residual presence of β-tricalcium phosphate. Biomimetic and hydrothermally treated scaffolds supported the adhesion and proliferation of rat mesenchymal stem cells, indicating a good suitability for bone tissue engineering applications. Statement of Significance: 3D plotting has opened up new perspectives in the bone regeneration field allowing the customisation of synthetic bone grafts able to fit patient-specific bone defects. Moreover, this technique allows the control of the scaffolds’ architecture and porosity. The present work introduces a new method to harden biomimetic hydroxyapatite 3D-plotted scaffolds which avoids high-temperature sintering. It has two main advantages: i) it is fast and simple, reducing the whole fabrication process from the several days required for the biomimetic processing to a few hours; and ii) it retains the nanostructured character of biomimetic hydroxyapatite and allows controlling the porosity from the nano- to the macroscale. Moreover, the good in vitro cytocompatibility results support its suitability for cell-based bone regeneration therapies.

JTD Keywords: Calcium phosphate, Hydroxyapatite, Biomimetic, Bone regeneration, 3D plotting, Direct ink writing, Bone graft