by Keyword: extracellular calcium

López-Canosa, Adrián, Pérez-Amodio, Soledad, Engel, Elisabeth, Castaño, Oscar, (2022). Microfluidic 3D Platform to Evaluate Endothelial Progenitor Cell Recruitment by Bioactive Materials Acta Biomaterialia 151, 264-277

Bohner, Marc, Maazouz, Yassine, Ginebra, Maria-Pau, Habibovic, Pamela, Schoenecker, Jonathan G., Seeherman, Howard, van den Beucken, Jeroen, Witte, Frank, (2022). Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification Acta Biomaterialia 145, 1-24

Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction.

JTD Keywords: beta-tricalcium phosphate, bone, bone graft, bone morphogenetic protein, demineralized bone-matrix, experimental myositis-ossificans, extracellular calcium, heterotopic ossification, in-vitro, inflammation, multinucleated giant-cells, osteoinduction, spinal-cord-injury, total hip-arthroplasty, traumatic brain-injury, Apatite, Calcium-sensing receptor

González-Vázquez, A., Planell, J. A., Engel, E., (2014). Extracellular calcium and CaSR drive osteoinduction in mesenchymal stromal cells Acta Biomaterialia 10, (6), 2824–2833

Bone is the main store of calcium and progenitor cells in the body. During the resorption process, the local calcium concentration reaches 8-40 mM, and the surrounding cells are exposed to these fluctuations in calcium. This stimulus is a signal that is detected through the calcium sensing receptor (CaSR), which modulates chemotactic and proliferative G protein-dependent signaling pathways. The objective of the present work is to evaluate the roles of extracellular calcium ([Ca2+]o) and the CaSR in osteoinduction. Rat bone marrow mesenchymal stromal cells (rBMSCs) were stimulated with 10 mM of Ca2+. Several experiments were conducted to demonstrate the effect of [Ca2+]o on chemotaxis, proliferation and differentiation on the osteoblastic lineage. It was found that [Ca2+]o induces rBMSCs to migrate and proliferate in a concentration-dependent manner. Real-time polymerase chain reaction and immunofluorescence also revealed that 10 mM Ca2+ stimulates overexpression of osteogenic markers in rBMSCs, including alkaline phosphatase (ALP), bone sialoprotein, collagen Ia1 and osteocalcin. Functional assays determining ALP activity and mineralization tests both corroborate the increased expression of these markers in rBMSCs stimulated with Ca2+. Moreover, CaSR blockage inhibited the cellular response to stimulation with high concentrations of [Ca2+]o, revealing that the CaSR is a key modulator of these cellular responses.

JTD Keywords: Calcium sensing receptor (CaSR), Extracellular calcium, Mesenchymal stromal cells (MSCs), Osteoinduction, Regenerative medicine