by Keyword: future

Lopez-Muñoz GA, Mughal S, Ramón-Azcón J, (2022). Sensors and Biosensors in Organs-on-a-Chip Platforms Advances In Experimental Medicine And Biology 1379, 55-80

Biosensors represent a powerful analytical tool for analyzing biomolecular interactions with the potential to achieve real-time quantitative analysis with high accuracy using low sample volumes, minimum sample pretreatment with high potential for the development of in situ and highly integrated monitoring platforms. Considering these advantages, their use in cell-culture systems has increased over the last few years. Between the different technologies for cell culture, organs-on-a-chip (OOCs) represent a novel technology that tries to mimic an organ's functionality by combining tissue engineering/organoid with microfluidics. Although there are still challenges to achieving OOC models with high organ mimicking relevance, these devices can offer effective models for drug treatment development by identifying drug targets, screening toxicity, and determining the potential effects of drugs in living beings. Consequently, in the future, we might replace animal studies by offering more ethical test models. Considering the relevance that different physiological and biochemical parameters have in the correct functionality of cells, sensing and biosensing platforms can offer an effective way for the real-time monitoring of physiological parameters and, in our opinion, more relevant, the secretion of biomarkers such as cytokines, growth factors, and others related with the influence of drugs or other types of stimulus in cell metabolism. Keeping this concept in mind, in this chapter, we focus on describing the potential use of sensors and biosensors in OOC devices to achieve fully integrated platforms that monitor physiological parameters and cell metabolism.© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

JTD Keywords: alignment, biosensors, cell, crystal microbalance biosensor, electrochemical biosensors, future, graphene oxide, label-free detection, organ-on-a-chip, oxygen, pre-clinical platforms, real-time analysis, screening, Biosensors, Organ-on-a-chip, Pre-clinical platforms, Screening, Sensors, Surface-plasmon resonance

Sans, J, Arnau, M, Sanz, V, Turon, P, Alemán, C, (2022). Polarized Hydroxyapatite: New Insights and Future Perspectives Through Systematic Electrical Characterization at the Interface Advanced Materials Interfaces 9, 2101631

Verschure PFMJ, Wierenga S, (2022). Future memory: a digital humanities approach for the preservation and presentation of the history of the Holocaust and Nazi crimes Holocaust Studies 28, 331-357

We describe the concepts, methodology, technology, and practice of a user-centric and historical space-oriented approach towards Historical and Cultural Learning (HCL). The Future Memory project pursues the unifying hypothesis that physical space can play a critical role in the authentication and education of this singular historical event, or space as a frame for memory formation and a source of authentication. We illustrate these aspects in the context of concrete Future Memory projects realized over the last ten years in collaboration with several memorial sites, museums, and archives. Based on these experiences, we subsequently analyze the lessons learned and future challenges. © 2021 Informa UK Limited, trading as Taylor & Francis Group.

JTD Keywords: Augmented reality, Commemoration, Digital heritage, Future memory, Post-wtiness era, Virtual reality

Planell, J. A., Navarro, M., (2009). Challenges in bone repair Bone repair biomaterials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK) , 3-24

A fundamental aspect of the rapidly expanding medical care sector, bone repair continues to benefit from emerging technological developments. This text provides researchers and students with a comprehensive review of the materials science and engineering principles behind these developments. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used in bone repair, including both metals and biocomposites. Final chapters analyze device considerations such as implant lifetime and failure, and discuss potential applications, as well as the ethical issues that continually confront researchers and clinicians.

JTD Keywords: Social impact of musculoskeletal disease, Economic burden of musculoskeletal disease, Social aspects of dental and maxillofacial conditions, Some clinical challenges of bone repair, Conclusions and future trends, Sources of further information and advice