by Keyword: hernia repair

Lanzalaco S, Weis C, Traeger KA, Turon P, Alemán C, Armelin E, (2023). Mechanical Properties of Smart Polypropylene Meshes: Effects of Mesh Architecture, Plasma Treatment, Thermosensitive Coating, and Sterilization Process Acs Biomaterials Science & Engineering 9, 3699-3711

Smart polypropylene (PP) hernia meshes were proposed to detect surgical infections and to regulate cell attachment-modulated properties. For this purpose, lightweight and midweight meshes were modified by applying a plasma treatment for subsequent grafting of a thermosensitive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm). However, both the physical treatment with plasma and the chemical processes required for the covalent incorporation of PNIPAAm can modify the mechanical properties of the mesh and thus have an influence in hernia repair procedures. In this work, the mechanical performance of plasma-treated and hydrogel-grafted meshes preheated at 37 °C has been compared with standard meshes using bursting and the suture pull out tests. Furthermore, the influence of the mesh architecture, the amount of grafted hydrogel, and the sterilization process on such properties have been examined. Results reveal that although the plasma treatment reduces the bursting and suture pull out forces, the thermosensitive hydrogel improves the mechanical resistance of the meshes. Moreover, the mechanical performance of the meshes coated with the PNIPAAm hydrogel is not influenced by ethylene oxide gas sterilization. Micrographs of the broken meshes evidence the role of the hydrogel as reinforcing coating for the PP filaments. Overall, results confirm that the modification of PP medical textiles with a biocompatible thermosensitive hydrogel do not affect, and even improve, the mechanical requirements necessary for the implantation of these prostheses in vivo.

JTD Keywords: biomaterials, bursting test, etox sterilization, hernia repair, hydrogels, infection, poly(n-isopropylacrylamide), pull outtest, surgical mesh, Abdominal-wall, Biomedical implant, Bursting test, Etox sterilization, Poly(n-isopropylacrylamide), Pull out test, Surgical mesh

Fontana-Escartín, Adrián, El Hauadi, Karima, Lanzalaco, Sonia, Pérez-Madrigal, Maria M., Armelin, Elaine, Turon, Pau, Alemán, Carlos, (2023). Preparation and Characterization of Functionalized Surgical Meshes for Early Detection of Bacterial Infections Acs Biomaterials Science & Engineering 9, 1104-1115

Isotactic polypropylene (i-PP) nonabsorbable surgical meshes are modified by incorporating a conducting polymer (CP) layer to detect the adhesion and growth of bacteria by sensing the oxidation of nicotinamide adenine dinucleotide (NADH), a metabolite produced by the respiration reactions of such microorganisms, to NAD+. A three-step process is used for such incorporation: (1) treat pristine meshes with low-pressure O2 plasma; (2) functionalize the surface with CP nanoparticles; and (3) coat with a homogeneous layer of electropolymerized CP using the nanoparticles introduced in (2) as polymerization nuclei. The modified meshes are stable and easy to handle and also show good electrochemical response. The detection by cyclic voltammetry of NADH within the interval of concentrations reported for bacterial cultures is demonstrated for the two modified meshes. Furthermore, Staphylococcus aureus and both biofilm-positive (B+) and biofilm-negative (B-) Escherichia coli cultures are used to prove real-time monitoring of NADH coming from aerobic respiration reactions. The proposed strategy, which offers a simple and innovative process for incorporating a sensor for the electrochemical detection of bacteria metabolism to currently existing surgical meshes, holds considerable promise for the future development of a new generation of smart biomedical devices to fight against post-operative bacterial infections.

JTD Keywords: adhesion, bacteria metabolism, behavior, biocompatibility, conducting polymer, electrochemical sensor, hernia repair, in-vivo, liquid, nadh detection, plasma treatment, prevention, reinforcement, sensor, smart meshes, Bacteria metabolism, Polypropylene mesh, Smart meshes