by Keyword: interleukin-6
van Aalen, EA, Rosier, BJHM, Jansen, T, Wouters, SFA, Vermathen, RT, van der Veer, HJ, Lozano, JY, Mughal, S, Fernández-Costa, J, Ramón-Azcón, J, den Toonder, JMJ, Merkx, M, (2023). Integrated Bioluminescent Immunoassays for High-Throughput Sampling and Continuous Monitoring of Cytokines Analytical Chemistry 95, 8922-8931
Immunoassays show great potential for the detection of low levels of cytokines, due to their high sensitivity and excellent specificity. There is a particular demand for biosensors that enable both high-throughput screening and continuous monitoring of clinically relevant cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα). To this end, we here introduce a novel bioluminescent immunoassay based on the ratiometric plug-and-play immunodiagnostics (RAPPID) platform, with an improved intrinsic signal-to-background and an >80-fold increase in the luminescent signal. The new dRAPPID assay, comprising a dimeric protein G adapter connected via a semiflexible linker, was applied to detect the secretion of IL-6 by breast carcinoma cells upon TNFα stimulation and the production of low concentrations of IL-6 (∼18 pM) in an endotoxin-stimulated human 3D muscle tissue model. Moreover, we integrated the dRAPPID assay in a newly developed microfluidic device for the simultaneous and continuous monitoring of changes in IL-6 and TNFα in the low-nanomolar range. The luminescence-based read-out and the homogeneous nature of the dRAPPID platform allowed for detection with a simple measurement setup, consisting of a digital camera and a light-sealed box. This permits the usage of the continuous dRAPPID monitoring chip at the point of need, without the requirement for complex or expensive detection techniques.
JTD Keywords: cells, code, elisa, il-6, inflammation, kits, pathogenesis, procalcitonin, release, Cytokines, Humans, Immunoassay, Immunologic tests, Interleukin-6, Tumor necrosis factor-alpha
Lopez-Muñoz, GA, Fernández-Costa, JM, Ortega, MA, Balaguer-Trias, J, Martin-Lasierra, E, Ramón-Azcón, J, (2021). Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles Nanophotonics 10, 4477-4488
Abstract The development of nanostructured plasmonic biosensors has been widely widespread in the last years, motivated by the potential benefits they can offer in integration, miniaturization, multiplexing opportunities, and enhanced performance label-free biodetection in a wide field of applications. Between them, engineering tissues represent a novel, challenging, and prolific application field for nanostructured plasmonic biosensors considering the previously described benefits and the low levels of secreted biomarkers (?pM–nM) to detect. Here, we present an integrated plasmonic nanocrystals-based biosensor using high throughput nanostructured polycarbonate substrates. Metallic film thickness and incident angle of light for reflectance measurements were optimized to enhance the detection of antibody–antigen biorecognition events using numerical simulations. We achieved an enhancement in biodetection up to 3× as the incident angle of light decreases, which can be related to shorter evanescent decay lengths. We achieved a high reproducibility between channels with a coefficient of variation below 2% in bulk refractive index measurements, demonstrating a high potential for multiplexed sensing. Finally, biosensing potential was demonstrated by the direct and label-free detection of interleukin-6 biomarker in undiluted cell culture media supernatants from bioengineered 3D skeletal muscle tissues stimulated with different concentrations of endotoxins achieving a limit of detection (LOD) of ? 0.03 ng/mL (1.4 pM).
JTD Keywords: assay, crystals, drug, label-free biosensing, molecules, plasmonic nanostructures, sensors, skeletal muscle, tissue engineering, Biodetection, Biomarkers, Biosensors, Cell culture, Cells, Chemical detection, Histology, Interleukin-6, Interleukin6 (il6), Label free, Label-free biosensing, Muscle, Nano-structured, Nanocrystals, Plasmonic nanocrystals, Plasmonic nanostructures, Plasmonics, Polycarbonate substrates, Polycarbonates, Refractive index, Sensitivity, Skeletal muscle, Tissue engineering, Tissues engineerings
De Matteis, V, Cascione, M, Rizzello, L, Manno, DE, Di Guglielmo, C, Rinaldi, R, (2021). Synergistic effect induced by gold nanoparticles with polyphenols shell during thermal therapy: Macrophage inflammatory response and cancer cell death assessment Cancers 13, 3610
Background: In recent decades, gold nanoparticle (Au NP)-based cancer therapy has been heavily debated. The physico-chemical properties of AuNPs can be exploited in photothermal therapy, making them a powerful tool for selectively killing cancer cells. However, the synthetic side products and capping agents often induce a strong activation of the inflammatory pathways of macrophages, thus limiting their further applications in vivo. Methods: Here, we described a green method to obtain stable polyphenol-capped AuNPs (Au NPs@polyphenols), as polyphenols are known for their anti-inflammatory and anticancer properties. These NPs were used in human macrophages to test key inflammation-related markers, such as NF-κB, TNF-α, and interleukins-6 and 8. The results were compared with similar NPs obtained by a traditional chemical route (without the polyphenol coating), proving the potential of Au NPs@polyphenols to strongly promote the shutdown of inflammation. This was useful in developing them for use as heat-synergized tools in the thermal treatment of two types of cancer cells, namely, breast cancer (MCF-7) and neuroblastoma (SH-SY5Y) cells. The cell viability, calcium release, oxidative stress, HSP-70 expression, mitochondrial, and DNA damage, as well as cytoskeleton alteration, were evaluated. Results: Our results clearly demonstrate that the combined strategy markedly exerts anticancer effects against the tested cancer cell, while neither of the single treatments (only heat or only NPs) induced significant changes. Conclusions: Au NP@polyphenols may be powerful agents in cancer treatment.
JTD Keywords: antioxidant, aunps, biocompatibility, biology, calcium, cancer, green synthesis, inflammation response, inhibition, interleukin-6, mechanisms, natural polyphenols, physico-chemical properties, polyphenols, size, thermal treatment, Aunps, Cancer, Green synthesis, Inflammation response, Nobilis l. leaves, Physico-chemical properties, Polyphenols, Thermal treatment
Parra-Monreal, V, Ortega-Machuca, MA, Ramin-Azcin, J, Svendsen, W, Romano-Rodriguez, A, Moreno-Sereno, M, (2021). Detection of cytokines in skeletal muscle tissue using optical SPR sensing platform Proceedings Of The 2021 13th Spanish Conference On Electron Devices, Cde 2021 , 102-105
In this work we have explored the use of a Surface Plasmon resonance (SPR) phenomenon for the detection of interleukin-6 (IL-6), a pro-inflammatory cytokine. It plays an important role in the muscle tissues, having direct relation with muscle contraction and, thus, it is considered a biomarker for some types of muscular dystrophies. Here we show that SPR can be used as a real-time monitoring of the shift of the reflectance dip of a gold diffraction grating in front to the antibody adhesion to gold.
JTD Keywords: antibodies, gratings, interleukin-6 (il-6), proteins, Antibodies, Gratings, Interleukin-6 (il-6), Proteins, Surface plasmon resonance