by Keyword: model organisms

Karkali, K., Jorba, I., Navajas, D., Martin-Blanco, E., (2022). Measuring ventral nerve cord stiffness in live flat-dissected Drosophila embryos by atomic force microscopy Star Protocols 3, 101901

Drosophila is an amenable system for addressing the mechanics of morphogenesis. We describe a workflow for characterizing the mechanical properties of its ventral nerve cord (VNC), at different developmental stages, in live, flat-dissected embryos employing atomic force microscopy (AFM). AFM is performed with spherical probes, and stiffness (Young’s modulus) is calculated by fitting force curves with Hertz’s contact model.

JTD Keywords: atomic force microscopy (afm), developmental biology, model organisms, Atomic force microscopy, Biology, Neurociencia, Neuroscience

Gil, V., Del Río, J. A., (2012). Analysis of axonal growth and cell migration in 3D hydrogel cultures of embryonic mouse CNS tissue Nature Protocols 7, (2), 268-280

This protocol uses rat tail-derived type I collagen hydrogels to analyze key processes in developmental neurobiology, such as chemorepulsion and chemoattraction. The method is based on culturing small pieces of brain tissue from embryonic or early perinatal mice inside a 3D hydrogel formed by rat tail-derived type I collagen or, alternatively, by commercial Matrigel. The neural tissue is placed in the hydrogel with other brain tissue pieces or cell aggregates genetically modified to secrete a particular molecule that can generate a gradient inside the hydrogel. The present method is uncomplicated and generally reproducible, and only a few specific details need to be considered during its preparation. Moreover, the degree and behavior of axonal growth or neural migration can be observed directly using phase-contrast, fluorescence microscopy or immunocytochemical methods. This protocol can be carried out in 4 weeks.

JTD Keywords: Cell biology, Cell culture, Developmental biology, Imaging, Model organisms, Neuroscience, Tissue culture