by Keyword: myotonic dystrophy
Overby, SJ, Cerro-Herreros, E, Espinosa-Espinosa, J, González-Martínez, I, Moreno, N, Fernández-Costa, JM, Balaguer-Trias, J, Ramón-Azcón, J, Pérez-Alonso, M, Moller, T, Llamusí, B, Artero, R, (2023). BlockmiR AONs as Site-Specific Therapeutic MBNL Modulation in Myotonic Dystrophy 2D and 3D Muscle Cells and HSALR Mice Pharmaceutics 15, 1118
The symptoms of Myotonic Dystrophy Type 1 (DM1) are multi-systemic and life-threatening. The neuromuscular disorder is rooted in a non-coding CTG microsatellite expansion in the DM1 protein kinase (DMPK) gene that, upon transcription, physically sequesters the Muscleblind-like (MBNL) family of splicing regulator proteins. The high-affinity binding occurring between the proteins and the repetitions disallow MBNL proteins from performing their post-transcriptional splicing regulation leading to downstream molecular effects directly related to disease symptoms such as myotonia and muscle weakness. In this study, we build on previously demonstrated evidence showing that the silencing of miRNA-23b and miRNA-218 can increase MBNL1 protein in DM1 cells and mice. Here, we use blockmiR antisense technology in DM1 muscle cells, 3D mouse-derived muscle tissue, and in vivo mice to block the binding sites of these microRNAs in order to increase MBNL translation into protein without binding to microRNAs. The blockmiRs show therapeutic effects with the rescue of mis-splicing, MBNL subcellular localization, and highly specific transcriptomic expression. The blockmiRs are well tolerated in 3D mouse skeletal tissue inducing no immune response. In vivo, a candidate blockmiR also increases Mbnl1/2 protein and rescues grip strength, splicing, and histological phenotypes.
JTD Keywords: antisense oligonucleotides, aon, blockmir, brain, expression, genes, mbnl, mir-218, mir-23b, mirna, muscleblind, myotonic dystrophy 1, phenotypes, proteins, type-1, Antisense oligonucleotides, Aon, Blockmir, Mbnl, Messenger-rna, Mir-218, Mir-23b, Mirna, Muscleblind, Myotonic dystrophy 1
Fernández-Garibay, X, Ortega, MA, Cerro-Herreros, E, Comelles, J, Martínez, E, Artero, R, Fernández-Costa, JM, Ramón-Azcón, J, (2021). Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle Biofabrication 13, 35035
Myotonic dystrophy type 1 (DM1) is the most common hereditary myopathy in the adult population. The disease is characterized by progressive skeletal muscle degeneration that produces severe disability. At present, there is still no effective treatment for DM1 patients, but the breakthroughs in understanding the molecular pathogenic mechanisms in DM1 have allowed the testing of new therapeutic strategies. Animal models and in vitro two-dimensional cell cultures have been essential for these advances. However, serious concerns exist regarding how faithfully these models reproduce the biological complexity of the disease. Biofabrication tools can be applied to engineer human three-dimensional (3D) culture systems that complement current preclinical research models. Here, we describe the development of the first in vitro 3D model of DM1 human skeletal muscle. Transdifferentiated myoblasts from patient-derived fibroblasts were encapsulated in micromolded gelatin methacryloyl-carboxymethyl cellulose methacrylate hydrogels through photomold patterning on functionalized glass coverslips. These hydrogels present a microstructured topography that promotes myoblasts alignment and differentiation resulting in highly aligned myotubes from both healthy and DM1 cells in a long-lasting cell culture. The DM1 3D microtissues recapitulate the molecular alterations detected in patient biopsies. Importantly, fusion index analyses demonstrate that 3D micropatterning significantly improved DM1 cell differentiation into multinucleated myotubes compared to standard cell cultures. Moreover, the characterization of the 3D cultures of DM1 myotubes detects phenotypes as the reduced thickness of myotubes that can be used for drug testing. Finally, we evaluated the therapeutic effect of antagomiR-23b administration on bioengineered DM1 skeletal muscle microtissues. AntagomiR-23b treatment rescues both molecular DM1 hallmarks and structural phenotype, restoring myotube diameter to healthy control sizes. Overall, these new microtissues represent an improvement over conventional cell culture models and can be used as biomimetic platforms to establish preclinical studies for myotonic dystrophy.
JTD Keywords: 3d cell culture, hydrogel micropatterning, myotonic dystrophy, skeletal muscle, tissue engineering, 3d cell culture, Animals, Cell differentiation, Humans, Hydrogel micropatterning, Muscle fibers, skeletal, Muscle, skeletal, Myoblasts, Myotonic dystrophy, Skeletal muscle, Tissue engineering