by Keyword: mirna
Rodríguez-Comas, J, Castaño, C, Ortega, MA, Tejedera, A, Fernandez-González, M, Novials, A, Párrizas, M, Ramón-Azcón, J, (2023). Immunoaffinity‐Based Microfluidic Platform for Exosomal MicroRNA Isolation from Obese and Lean Mouse Plasma Advanced Materials Technologies 8, 2300054
Overby, SJ, Cerro-Herreros, E, Espinosa-Espinosa, J, González-Martínez, I, Moreno, N, Fernández-Costa, JM, Balaguer-Trias, J, Ramón-Azcón, J, Pérez-Alonso, M, Moller, T, Llamusí, B, Artero, R, (2023). BlockmiR AONs as Site-Specific Therapeutic MBNL Modulation in Myotonic Dystrophy 2D and 3D Muscle Cells and HSALR Mice Pharmaceutics 15, 1118
The symptoms of Myotonic Dystrophy Type 1 (DM1) are multi-systemic and life-threatening. The neuromuscular disorder is rooted in a non-coding CTG microsatellite expansion in the DM1 protein kinase (DMPK) gene that, upon transcription, physically sequesters the Muscleblind-like (MBNL) family of splicing regulator proteins. The high-affinity binding occurring between the proteins and the repetitions disallow MBNL proteins from performing their post-transcriptional splicing regulation leading to downstream molecular effects directly related to disease symptoms such as myotonia and muscle weakness. In this study, we build on previously demonstrated evidence showing that the silencing of miRNA-23b and miRNA-218 can increase MBNL1 protein in DM1 cells and mice. Here, we use blockmiR antisense technology in DM1 muscle cells, 3D mouse-derived muscle tissue, and in vivo mice to block the binding sites of these microRNAs in order to increase MBNL translation into protein without binding to microRNAs. The blockmiRs show therapeutic effects with the rescue of mis-splicing, MBNL subcellular localization, and highly specific transcriptomic expression. The blockmiRs are well tolerated in 3D mouse skeletal tissue inducing no immune response. In vivo, a candidate blockmiR also increases Mbnl1/2 protein and rescues grip strength, splicing, and histological phenotypes.
JTD Keywords: antisense oligonucleotides, aon, blockmir, brain, expression, genes, mbnl, mir-218, mir-23b, mirna, muscleblind, myotonic dystrophy 1, phenotypes, proteins, type-1, Antisense oligonucleotides, Aon, Blockmir, Mbnl, Messenger-rna, Mir-218, Mir-23b, Mirna, Muscleblind, Myotonic dystrophy 1
Boloix, A, Feiner-Gracia, N, Kober, M, Repetto, J, Pascarella, R, Soriano, A, Masanas, M, Segovia, N, Vargas-Nadal, G, Merlo-Mas, J, Danino, D, Abutbul-Ionita, I, Foradada, L, Roma, J, Cordoba, A, Sala, S, Toledo, JS, Gallego, S, Veciana, J, Albertazzi, L, Segura, MF, Ventosa, N, (2022). Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics Small 18, 2101959
MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (<150 nm) and composition. These nanovesicles are colloidal stable (>24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics.
JTD Keywords: cancer therapy, mirnas delivery, nanocarriers, nanovesicles, neuroblastoma, pediatric cancer, quatsomes, Biodistribution, Cancer therapy, Cell engineering, Cells, Cholesterol, Controlled drug delivery, Diseases, Dna, Dysregulated ph, Lipoplex, Microrna delivery, Mirnas delivery, Nanocarriers, Nanoparticles, Nanovesicle, Nanovesicles, Neuroblastoma, Neuroblastomas, Pediatric cancer, Ph sensitive, Ph sensors, Quatsome, Quatsomes, Rna, Sirna, Sirna delivery, Sirnas delivery, Small interfering rna, Small rna, Targeted drug delivery, Tumors, Vesicles