DONATE

Publications

by Keyword: persistence

Calò A, Eleta-Lopez A, Ondarçuhu T, Verdaguer A, Bittner AM, (2021). Nanoscale wetting of single viruses Molecules 26,

The epidemic spread of many viral infections is mediated by the environmental conditions and influenced by the ambient humidity. Single virus particles have been mainly visualized by atomic force microscopy (AFM) in liquid conditions, where the effect of the relative humidity on virus topography and surface cannot be systematically assessed. In this work, we employed multi-frequency AFM, simultaneously with standard topography imaging, to study the nanoscale wetting of individual Tobacco Mosaic virions (TMV) from ambient relative humidity to water condensation (RH > 100%). We recorded amplitude and phase vs. distance curves (APD curves) on top of single virions at various RH and converted them into force vs. distance curves. The high sensitivity of multifrequency AFM to visualize condensed water and sub-micrometer droplets, filling gaps between individual TMV particles at RH > 100%, is demonstrated. Dynamic force spectroscopy allows detecting a thin water layer of thickness ⁓1 nm, adsorbed on the outer surface of single TMV particles at RH < 60%.

JTD Keywords: amplitude-modulation am-afm, atomic-force microscopy, capillary, force reconstruction, multifrequency afm, nanoscale wetting, persistence, reconstruction, relative-humidity, surfaces, tobacco mosaic virus (tmv), tobamovirus, transmission, water, Amplitude-modulation am-afm, Force reconstruction, Multifrequency afm, Nanoscale wetting, Tobacco mosaic virus (tmv), Tobacco mosaic virus (tmv), nanoscale wetting, Tobacco-mosaic-virus


Del Mar Cendra, Maria, Torrents, Eduard, (2020). Differential adaptability between reference strains and clinical isolates of Pseudomonas aeruginosa into the lung epithelium intracellular lifestyle Virulence 11, (1), 862-876

Intracellular invasion is an advantageous mechanism used by pathogens to evade host defense and antimicrobial therapy. In patients, the intracellular microbial lifestyle can lead to infection persistence and recurrence, thus worsening outcomes. Lung infections caused by Pseudomonas aeruginosa, especially in cystic fibrosis (CF) patients, are often aggravated by intracellular invasion and persistence of the pathogen. Proliferation of the infectious species relies on a continuous deoxyribonucleotide (dNTP) supply, for which the ribonucleotide reductase enzyme (RNR) is the unique provider. The large genome plasticity of P. aeruginosa and its ability to rapidly adapt to different environments are challenges for studying the pathophysiology associated with this type of infection. Using different reference strains and clinical isolates of P. aeruginosa independently combined with alveolar (A549) and bronchial (16HBE14o- and CF-CFBE41o-) epithelial cells, we analyzed host–pathogen interactions and intracellular bacterial persistence with the aim of determining a cell type-directed infection promoted by the P. aeruginosa strains. The oscillations in cellular toxicity and oxygen consumption promoted by the intracellular persistence of the strains were also analyzed among the different infectious lung models. Significantly, we identified class II RNR as the enzyme that supplies dNTPs to intracellular P. aeruginosa. This discovery could contribute to the development of RNR-targeted strategies against the chronicity occurring in this type of lung infection. Overall our study demonstrates that the choice of bacterial strain is critical to properly study the type of infectious process with relevant translational outcomes.

JTD Keywords: Pseudomonas aeruginosa, Intracellular persistence, Lung, Epithelial cells, Clinical isolates, Host-pathogen interactions, Intracellular lifestyle, Chronic infections, Cystic fibrosis, Ribonucleotide reductase