by Keyword: pluripotent stem-cells

Liu, M, Zhang, C, Gong, XM, Zhang, T, Lian, MM, Chew, EGY, Cardilla, A, Suzuki, K, Wang, HM, Yuan, Y, Li, Y, Naik, MY, Wang, YX, Zhou, BR, Soon, WZ, Aizawa, E, Li, P, Low, JH, Tandiono, M, Montagud, E, Moya-Rull, D, Esteban, CR, Luque, Y, Fang, ML, Khor, CC, Montserrat, N, Campistol, JM, Belmonte, JCI, Foo, JN, Xia, Y, (2024). Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo Cell Stem Cell 31, 52-70.e8

Human pluripotent stem cell -derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single -cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA -approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.

JTD Keywords: Adenylate kinase, Adult, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Autophagosome, Autophagy, Autophagy (cellular), Calcium homeostasis, Cilia, Cilium, Cohort analysis, Controlled study, Cyclic amp, Dominant polycystic kidney,pluripotent stem-cells,autosomal-dominant,disease,expression,mutations,growth,generation,epithelium,framewor, Enzyme linked immunosorbent assay, Exon, Female, Food and drug administration, Hepatitis a virus cellular receptor 1, Human, Human cell, Humans, Immunohistochemistry, In vitro study, In vivo study, Kidney, Kidney organoid, Kidney polycystic disease, Male, Minoxidil, Mouse, Nonhuman, Organoid, Organoids, Platelet derived growth factor beta receptor, Polycystic kidney diseases, Protein kinase lkb1, Renin, Sequestosome 1, Single cell analysis, Single cell rna seq, Small nuclear rna, Tunel assay, Upregulation, Western blotting, Whole exome sequencing

Nauryzgaliyeva, Z, Corredera, IG, Garreta, E, Montserrat, N, (2023). Harnessing mechanobiology for kidney organoid research Frontiers In Cell And Developmental Biology 11, 1273923

Recently, organoids have emerged as revolutionizing tools with the unprecedented potential to recreate organ-specific microanatomy in vitro. Upon their derivation from human pluripotent stem cells (hPSCs), organoids reveal the blueprints of human organogenesis, further allowing the faithful recapitulation of their physiology. Nevertheless, along with the evolution of this field, advanced research exposed the organoids' shortcomings, particularly regarding poor reproducibility rates and overall immatureness. To resolve these challenges, many studies have started to underscore the relevance of mechanical cues as a relevant source to induce and externally control hPSCs differentiation. Indeed, established organoid generation protocols from hPSCs have mainly relyed on the biochemical induction of fundamental signalling pathways present during kidney formation in mammals, whereas mechanical cues have largely been unexplored. This review aims to discuss the pertinence of (bio) physical cues within hPSCs-derived organoid cultures, while deciphering their effect on morphogenesis. Moreover, we will explore state-of-the-art mechanobiology techniques as revolutionizing means for understanding the underlying role of mechanical forces in biological processes in organoid model systems.

JTD Keywords: development, hpscs, mechanobiology, nephrogenesis, Activated ion-channel, Development, Extracellular-matrix viscoelasticity, Forces, Hpscs, Ips cells, Mechanical regulation, Mechanobiology, Nephrogenesis, Nephron progenitors, Organoids, Pluripotent stem-cells, Self-renewal, Substrate mechanics, Tissue

Pereira, I, Lopez-Martinez, MJ, Samitier, J, (2023). Advances in current in vitro models on neurodegenerative diseases Frontiers In Bioengineering And Biotechnology 11, 1260397

Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.

JTD Keywords: 3d in vitro models, bioprinting, ipsc cell culture, microfluidic device, 3d in vitro models, Bioprinting, Blood-brain-barrier, Cerebral organoids, Culture model, Endothelial-cells, Expression profile, Extracellular-matrix, Ipsc cell culture, Microfluidic device, Neurodegenerative diseases, On-a-chip, Pluripotent stem-cells, Shear-stress, Substrate stiffness

Placci, M, Giannotti, MI, Muro, S, (2023). Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders Advanced Drug Delivery Reviews 197, 114683

Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that consti-tute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their per-formance, and important items to consider for their clinical translation. Overall, polymeric nanocon-structs hold considerable promise to advance treatment for LSDs.(c) 2023 Elsevier B.V. All rights reserved.

JTD Keywords: cellular and animal models, enzyme replacement therapy, lysosomal storage disorders, nanoemulsions, nanoparticles, Beta-glucuronidase deficiency, Blood-brain-barrier, Cellular and animal models, Central-nervous-system, Enzyme replacement therapy, Feline gm1 gangliosidosis, Human acid sphingomyelinase, Human alpha-galactosidase, Lysosomal storage disorders, Mucopolysaccharidosis type-ii, Nanoemulsions, Nanoparticles, Neuronal ceroid-lipofuscinosis, Niemann-pick-disease, Pluripotent stem-cells, Polymer-based drug delivery systems

Fontcuberta-PiSunyer, M, García-Alamán, A, Prades, É, Téllez, N, Alves-Figueiredo, H, Ramos-Rodríguez, M, Enrich, C, Fernandez-Ruiz, R, Cervantes, S, Clua, L, Ramón-Azcón, J, Broca, C, Wojtusciszyn, A, Montserrat, N, Pasquali, L, Novials, A, Servitja, JM, Vidal, J, Gomis, R, Gasa, R, (2023). Direct reprogramming of human fibroblasts into insulin-producing cells using transcription factors Commun Biol 6, 256

Direct lineage reprogramming of one somatic cell into another without transitioning through a progenitor stage has emerged as a strategy to generate clinically relevant cell types. One cell type of interest is the pancreatic insulin-producing β cell whose loss and/or dysfunction leads to diabetes. To date it has been possible to create β-like cells from related endodermal cell types by forcing the expression of developmental transcription factors, but not from more distant cell lineages like fibroblasts. In light of the therapeutic benefits of choosing an accessible cell type as the cell of origin, in this study we set out to analyze the feasibility of transforming human skin fibroblasts into β-like cells. We describe how the timed-introduction of five developmental transcription factors (Neurog3, Pdx1, MafA, Pax4, and Nkx2-2) promotes conversion of fibroblasts toward a β-cell fate. Reprogrammed cells exhibit β-cell features including β-cell gene expression and glucose-responsive intracellular calcium mobilization. Moreover, reprogrammed cells display glucose-induced insulin secretion in vitro and in vivo. This work provides proof-of-concept of the capacity to make insulin-producing cells from human fibroblasts via transcription factor-mediated direct reprogramming.© 2023. The Author(s).

JTD Keywords: adult, beta-cells, differentiation, direct conversion, genes, in-vivo, islets, maturation, pancreatic progenitors, Pluripotent stem-cells

Badiola-Mateos, M, Osaki, T, Kamm, RD, Samitier, J, (2022). In vitro modelling of human proprioceptive sensory neurons in the neuromuscular system Scientific Reports 12, 21318

Proprioceptive sensory neurons (pSN) are an essential and undervalued part of the neuromuscular circuit. A protocol to differentiate healthy and amyotrophic lateral sclerosis (ALS) human neural stem cells (hNSC) into pSN, and their comparison with the motor neuron (MN) differentiation process from the same hNSC sources, facilitated the development of in vitro co-culture platforms. The obtained pSN spheroids cultured interact with human skeletal myocytes showing the formation of annulospiral wrapping-like structures between TrkC + neurons and a multinucleated muscle fibre, presenting synaptic bouton-like structures in the contact point. The comparative analysis of the genetic profile performed in healthy and sporadic ALS hNSC differentiated to pSN suggested that basal levels of ETV1, critical for motor feedback from pSN, were much lower for ALS samples and that the differences between healthy and ALS samples, suggest the involvement of pSN in ALS pathology development and progression.© 2022. The Author(s).

JTD Keywords: Amyotrophic-lateral-sclerosis,pluripotent stem-cells,peripheral nervous-system,stretch reflex arc,mechanosensory circuit,cellular-localization,molecular-cloning,motor-neurons,muscle,expressio

Sala-Jarque, J, Zimkowska, K, Avila, J, Ferrer, I, del Rio, JA, (2022). Towards a Mechanistic Model of Tau-Mediated Pathology in Tauopathies: What Can We Learn from Cell-Based In Vitro Assays? International Journal Of Molecular Sciences 23, 11527

Tauopathies are a group of neurodegenerative diseases characterized by the hyperphosphorylation and deposition of tau proteins in the brain. In Alzheimer's disease, and other related tauopathies, the pattern of tau deposition follows a stereotypical progression between anatomically connected brain regions. Increasing evidence suggests that tau behaves in a "prion-like" manner, and that seeding and spreading of pathological tau drive progressive neurodegeneration. Although several advances have been made in recent years, the exact cellular and molecular mechanisms involved remain largely unknown. Since there are no effective therapies for any tauopathy, there is a growing need for reliable experimental models that would provide us with better knowledge and understanding of their etiology and identify novel molecular targets. In this review, we will summarize the development of cellular models for modeling tau pathology. We will discuss their different applications and contributions to our current understanding of the "prion-like" nature of pathological tau.

JTD Keywords: neurodegeneration, seeding, spreading, Culture model, Efficient generation, Extracellular tau, Familial alzheimers-disease, Microtubule-associated protein, Mouse model, Neurodegeneration, Neurofibrillary tangles, Paired helical filaments, Pathogenic tau, Pluripotent stem-cells, Seeding, Spreading, Tauopathies

Safi, W, Marco, A, Moya, D, Prado, P, Garreta, E, Montserrat, N, (2022). Assessing kidney development and disease using kidney organoids and CRISPR engineering Frontiers In Cell And Developmental Biology 10, 948395

The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.Copyright © 2022 Safi, Marco, Moya, Prado, Garreta and Montserrat.

JTD Keywords: crispr, directed differentiation, epithelial-cells, expression, kidney engineering, kidney organoids, model, mouse, nephrogenesis, nephron number, podocytes, progenitor, Crispr, Kidney engineering, Kidney organoids, Nephrogenesis, Pluripotent stem cells, Pluripotent stem-cells

Aydin, O, Passaro, AP, Raman, R, Spellicy, SE, Weinberg, RP, Kamm, RD, Sample, M, Truskey, GA, Zartman, J, Dar, RD, Palacios, S, Wang, J, Tordoff, J, Montserrat, N, Bashir, R, Saif, MTA, Weiss, R, (2022). Principles for the design of multicellular engineered living systems Apl Bioengineering 6, 10903

Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell–cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the “black box” of living cells.

JTD Keywords: cell-fate specification, endothelial-cells, escherichia-coli, extracellular-matrix, gene-expression noise, nuclear hormone-receptors, pluripotent stem-cells, primitive endoderm, transcription factors, Artificial tissues, Assembly cells, Biological parts, Biological systems, Bioremediation, Blood-brain-barrier, Cell engineering, Cell/matrix communication, Design principles, Environmental technology, Functional modules, Fundamental design, Genetic circuits, Genetic engineering, Living machines, Living systems, Medical applications, Molecular biology, Synthetic biology

Garreta, E, Kamm, RD, Lopes, SMCD, Lancaster, MA, Weiss, R, Trepat, X, Hyun, I, Montserrat, N, (2021). Rethinking organoid technology through bioengineering Nature Materials 20, 145-155

In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine. This Review provides an overview of bioengineering technologies that can be harnessed to facilitate the culture, self-organization and functionality of human pluripotent stem cell-derived organoids.

JTD Keywords: Differentiation, Embryonic-tissues, Extracellular-matrix, In-vitro, Kidney organoids, Model, Neural-tube, Pluripotent stem-cells, Reconstitution, Self-organization